Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
de M dat gia tri nho nhat thi 5/x nho nhat
=> x = -1
kl_
Phương Uyên 2-(-5)=+7(âm - âm=dương)
Để \(M_{min}\Rightarrow\left(2-\frac{5}{x}\right)_{min}\Rightarrow\left(\frac{5}{x}\right)_{max}\)
ta thấy 5>0 và không đổi => x>0
mà để \(\left(\frac{5}{x}\right)max\Rightarrow x_{min}\text{ mà }x>0\Rightarrow x=1\left(x\in Z\right)\)
Vậy ....
p/s: nếu x=-1 =>\(2-\frac{5}{x}=2-\frac{5}{-1}=2+5=7\)
Đặt \(A=\frac{1}{x-5}\)
Để A có GTNN thì \(x-5< 0\) và đạt GTLN
\(\Rightarrow\)\(x-5=-1\)
\(\Rightarrow\)\(x=4\)
\(\Rightarrow\)\(A=\frac{1}{x-5}=\frac{1}{4-5}=\frac{1}{-1}=-1\)
Vậy \(A_{min}=-1\) khi \(x=4\)
Để 1/x-5 là giá trị nhỏ nhất
=> 1/x-5=-1 => x-5=-1
mà x-5 =-1
=> x=4
:3
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
bạn chia trên tử dưới mẫu ra ta được -1+1\(x-2013)...-1 không thay đổi mà để nó là số nguyên thì x-2013 chia hết cho 1 nên x=2012 or 2014 mà đề cho là số nguyên nhỏ nhất nên x=2012 vây M=-2 là nhỏ nhất
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(M=\frac{2016x-2016}{3x+2}=\frac{3x+2013x+2-2018}{3x+2}=\frac{3x+2+2013x-2018}{3x+2}=1+\frac{2013x-2018}{3x+2}\)
de min A thi 3x + 2 nho nhat
<=> 3x + 2 = -1
<=> 3x = -3
<=> x = -1
vay_
\(M=\frac{2016x-2016}{3x+2}=672-\frac{3360}{3x+2}\)
Để M nhỏ nhất thì \(\frac{3360}{3x+2}\)lớn nhất
Hay 3x + 2 là số dương nhỏ nhất vì x nguyên
\(\Rightarrow3x+2\ge1\)
\(\Rightarrow x\ge-\frac{1}{3}=-0,333\)
Vì x nguyên nên x = 0 là giá trị cần tìm
Vì \(2x⋮x\Rightarrow-5⋮x\)
\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)
Thì Mmin = 1