Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{3n-1}{n-1}\inℤ\)
\(\Rightarrow3n-1⋮n-1\)
\(\Rightarrow3n-3+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+2⋮n-1\)
\(3\left(n-1\right)⋮n-1\)
\(\Rightarrow2⋮n-1\)
...
\(M=\frac{3n-1}{n-1}\)có giá trị là số nguyên\(\Rightarrow3\left(n-1\right)+2⋮n-1\Rightarrow2⋮n-1\Rightarrow n-1\inƯ\left(2\right)=\left(-1;1;-2;2\right)\\
\)
Ta có bảng
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Thử lại ta có \(n\in\left(0;2;-1;3\right)\)thì M nhận giá trị nguyên
Để M là số nguyên thì \(3n-1⋮n-1\)
=>\(3n-3+2⋮n-1\)
=>\(2⋮n-1\)
=>\(n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{2;0;3;-1\right\}\)
Ta có M=6n-3/3n+1=(6n+2)-5/3n+1=2(3n+1)-5/3n+1=2- 5/3n+1
Khi đó M nguyên khi 5/3n+1 nguyên
<=> 3n+1={1;-1;5;-5}
<=> n={0;-2/3;4/3;-2}
Mà n nguyên
=> n={0;-2}
Khi đó M lần lượt nhận các giá trị tương ứng -3;3 đều là các số nguyên
Vậy n={0;-2}
a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1
=>3(n-1)+7 chia hết cho n-1
=> n-1 thuộc Ư(7)={1;7;-1;-7}
Phần cuối bn tự làm nha
Còn câu b làm tương tự
a) Từ đề bài, ta có:
\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)
b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)
\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)
Ta có : \(\frac{3x+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để : \(\frac{3n+2}{n-1}\) nguyên thì \(\frac{5}{n-1}\) nguyên
Để : \(\frac{5}{n-1}\) thì \(n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
M = 3n-1/n-1 nguyên
=> 3n - 1 chia hết cho n - 1
=> 3n - 3 + 2 chia hết cho n - 1
=> 3(n - 1) + 2 chia hết cho n - 1
=> 2 chia hết cho n - 1
=> n - 1 thuộc Ư(2)
=> n - 1 thuộc {-1;1-2;2}
=> n thuộc {0; 2; -1; 3}
a) ta có: \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3.\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
Để A là số nguyên
=> 21/n-4 là số nguyên
\(\Rightarrow21⋮n-4\Rightarrow n-4\inƯ_{\left(21\right)}=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
nếu n-4 = 1 => n = 5 (TM) => \(A=3+\frac{21}{5-1}=3+\frac{21}{1}=3+21=24\)
....
bn tự xét típ nha
Để A là số nguyên thì : ( dấu " : " là dấu chia hết cho )
3n + 9 : n - 4
3n - 12 + 21 : n - 4
3 ( n - 4 ) + 21 : n - 4
mà 3 ( n - 4 ) : n - 4
=> 21 : n - 4 => n - 4 thuộc Ư(21) = { 1; 3; 7; 21; -1; -3; -7; -21 }
Ta có bảng :
n-4 | 1 | 3 | 7 | 21 | -1 | -3 | -7 | -21 |
n | 5 | 7 | 11 | 25 | 3 | 1 | -3 | -17 |
Vậy,.........
\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 = \({\pm 1 , \pm (6n-1)}\)
.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)
.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )
.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )
.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )
Kết luận vậy n = { -1,1 }
\(M=\dfrac{3n-1}{n-1}=\dfrac{3n-3+2}{n-1}=3+\dfrac{2}{n-1}\)
Để M min thì \(\dfrac{2}{n-1}\) min
=>n-1=-1
=>n=0