Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện a khác 0
\(B=\frac{\left(a-3\right)^2}{a}=\frac{a^2-6a+9}{a}=a+\frac{9}{a}-6\)
Để B là số nguyên thì \(a\inƯ\left(9\right)\)
Liệt kê ra là xong nhé :)
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
\(A=\frac{2\left(x+1\right)}{x^3+1}=\frac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{x^2-x+1}\)
Để A nhận GT nguyên \(\Leftrightarrow x^2-x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\) nên
\(\orbr{\begin{cases}x^2-x+1=0\\x^2-x+1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)x=0\\x-\frac{1}{2}=+-\sqrt{\frac{5}{4}}\left(l\right)\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x=\left\{0;1\right\}\)