Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Y=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(Y=\sqrt{1-x}+\sqrt{1+x}\le\frac{1-x+1+1+x+1}{2}=2\)
Dấu "=" xảy ra khi \(x=0\)
a)Dễ thấy: \(M=\sqrt{\left(\sqrt{x-3}-1\right)^2}+\sqrt{\left(\sqrt{x-3}-2\right)^2}\)
\(\Rightarrow M\)có nghĩa\(\Leftrightarrow x-3\ge0\Leftrightarrow x\ge3\)
b) với \(3\le x\le4\)M xác định
\(3\le x\le4\Rightarrow\sqrt{x-3}\le1\)
\(\Rightarrow M=\left|\sqrt{x-3}-1\right|+\left|\sqrt{x-3}-2\right|=1-\sqrt{x-3}+2-\sqrt{x-3}=3-2\sqrt{x-3}\)
\(A^2=x+2+2\sqrt{\left(x+2\right)\left(2-x\right)}+2-x==4+2\sqrt{\left(x+2\right)\left(2-x\right)}\ge4\)
\(\Rightarrow A\ge2\).Nên GTNN của A là 2 đạt được khi \(\sqrt{\left(x+2\right)\left(2-x\right)}=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(A^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x+2}\right)^2+\left(\sqrt{2-x}\right)^2\right]\)
\(=2.\left(x+2+2-x\right)=2.4=8\)
\(\Rightarrow A\le\sqrt{8}\).Nên GTLN của A là \(\sqrt{8}\) đạt được khi \(\frac{\sqrt{x+2}}{1}=\frac{\sqrt{2-x}}{1}\Leftrightarrow\sqrt{x+2}=\sqrt{2-x}\)
\(\Rightarrow x+2=2-x\Leftrightarrow2x=0\Leftrightarrow x=0\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
\(D=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}\)
\(=\sqrt{2}\)
dấu "=" xảy ra khi: \(\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{4-x}=0\end{cases}\orbr{\begin{cases}x=2\\x=4\end{cases}}}\)
vậy MIN \(D=\sqrt{2}\)
\(D=\sqrt{x-2}+\sqrt{4-x}\le\frac{x-2+1+4-x+1}{2}=4\)
dấu "=" xảy ra khi \(x=3\)
vậy \(MAX:D=4\)
\(D=\sqrt{x-2}+\sqrt{4-x}\)
\(\Rightarrow D^2=x-2+2\sqrt{\left(x-2\right)\left(4-x\right)}+4-x=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
*GTNN
Với 2 ≤ x ≤ 4 => \(2\sqrt{\left(x-2\right)\left(4-x\right)}\ge0\Leftrightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\ge2\)
hay D2 ≥ 2 => D ≥ √2 . Dấu "=" xảy ra <=> x = 2 hoặc x = 4 (tm)
*GTLN
Áp dụng bất đẳng thức AM-GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\Rightarrow2+2\sqrt{\left(x-2\right)\left(4-x\right)}\le4\)
hay D2 ≤ 4 => D ≤ 2 . Dấu "=" xảy ra <=> x = 3 (tm)
Vậy \(\hept{\begin{cases}Min_D=\sqrt{2}\Leftrightarrow x=2orx=4\\Max_D=2\Leftrightarrow x=3\end{cases}}\)