Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=sinx+siny+sin\left(3x+y\right)-sin\left(3x+y\right)-sin\left(x+y\right)\)
\(=sinx+siny-sin\left(x+y\right)\)
\(S^2=\left(sinx+siny-sin\left(x+y\right)\right)^2\le3\left(sin^2x+sin^2y+sin^2\left(x+y\right)\right)\)
\(S^2\le3\left(1-\dfrac{1}{2}\left(cos2x+cos2y\right)+sin^2\left(x+y\right)\right)\)
\(S^2\le3\left[1-cos\left(x+y\right)cos\left(x-y\right)+1-cos^2\left(x-y\right)\right]\)
\(S^2\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)-\left[cos\left(x-y\right)-\dfrac{1}{2}cos\left(x+y\right)\right]^2\right]\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)\right]\)
\(S^2\le3\left(2+\dfrac{1}{4}\right)=\dfrac{27}{4}\)
\(\Rightarrow S\le\dfrac{3\sqrt{3}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\\c=2\end{matrix}\right.\)
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
2: \(-4x^2+5x-2\)
\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)
\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)
Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)
Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)
=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)
\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)
\(=16m^2+32m+16+4\left(1-4m^2\right)\)
\(=32m+20\)
Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)
=>32m+20<0
=>32m<-20
=>\(m< -\dfrac{5}{8}\)
\(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
\(\left(-\dfrac{11}{2};7\right)\cap\left(-2;\dfrac{27}{2}\right)=\left(-2;7\right)\)
\(\left(0;12\right)\cap[5;+\infty)=[5;12)\)
\(R\cap\left[-1;1\right]=\left[-1;1\right]\)
d.
ĐKXĐ: \(x\left|x\right|-4>0\)
\(\Leftrightarrow x\left|x\right|>4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)
e.
ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)
Ta có:
\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)
\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)
f.
ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)
Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)
Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)
Kết hợp với \(x\ge-2\Rightarrow x>-2\)
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\forall x\in R\)
Dấu "=" xảy ra khi\(2x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{6}\)
\(B=-2\left(x-3\right)^2-\dfrac{7}{11}\left|3y+7\right|-2011\ge-2011\forall x,y\in R\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-3=0\\3y+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-\dfrac{7}{3}\end{matrix}\right.\)
\(C=\left|2x+1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}2x+1=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)