Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ax^2+a=3-4x\Leftrightarrow ax^2+4x+a-3=0\left(1\right)\)
tìm tiềm kiện để (1) có nghiệm
a=0=>có nghiệm x=3/4 với a khác không
\(2^2-a\left(a-3\right)\ge0\)
\(\Leftrightarrow a^2-3a-4\le0\)\(\Rightarrow-1\le a\le4\)
GTLN A=\(4\)
A=(3-4x)/(x^2+1)
ta có 4-A=4-(3-4x)/(x^2+1)
=[4(x^2+1)-3+4x]/(x^2+1)
=(4x^2+4-3+4x)/(x^2+1)=(4x^2+4x+1)/(x^2+1)
=(2x+1)^2/(x^2+1) >= 0 với mọi x
=>A=4-(2x+1)^2/(x^2+1) <= 4 với mọi x
Vậy maxA=4 ,dấu "=" xảy ra khi x=-1/2
\(F=-x^2-4x+20=-\left(x^2+4x-20\right)\)
\(=-\left(x^2+4x+4-24\right)=-\left(x+2\right)^2+24\le24\)
Dấu ''='' xảy ra khi x = -2
Vậy GTLN F là 24 khi x = -2
Ta có: \(F=-x^2-4x+20\)
\(=-\left(x^2+4x-20\right)\)
\(=-\left(x^2+4x+4-24\right)\)
\(=-\left(x+2\right)^2+24\le24\forall x\)
Dấu '=' xảy ra khi x=-2
M = 12 - (3x^2+6x+3) = 12 - 3.(x+1)^2 <= 12
Dấu "=" xảy ra <=> x+1 = 0 <=> x = -1
Vậy GTLN của M = 12 <=> x = -1
k mk nha
\(M=-3x^2-6x+9\)
\(=\left(-3x^2-6x-3\right)+12\)
\(=12-3\left(x^2+2x+1\right)\)
\(=12-\left(x+1\right)^2\)
Do \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow M\le12\)
Dấu = xảy ra khi \(\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy \(M_{Max}=12\Leftrightarrow x=-1\)
Ta có: x2 + 13x + 2012 = \(\frac{2×13}{2}x+x^2+\frac{169}{4}+\frac{7849}{4}=\left(x+\frac{13}{2}\right)^2+\frac{7849}{4}\)
\(\ge\frac{7849}{4}\)
Đạt GTNN khi x = \(\frac{-13}{2}\)