Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
\(M=\left|\frac{1}{3}-x\right|+5\ge5\forall x\)
Dấu ''='' xảy ra khi x = 1/3
Vậy GTNN của M bằng 5 tại x = 1/3
\(N=-\left|x+\frac{2}{3}\right|+2\le2\forall x\)
Dấu ''='' xảy ra khi x = -2/3
Vậy GTLN của N bằng 2 tại x = -2/3
tìm giá trị nhỏ nhất của M=5+|1/3-x|
Vì với mọi x (Giá trị tuyệt đối của một số luôn không âm)
Nên với mọi x
Ta có:
Vậy với x =
\(B=\frac{2\sqrt{x}+5}{\sqrt{x}+2}=\frac{2\sqrt{x}+4+1}{\sqrt{x}+2}=\frac{2.\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{1}{\sqrt{x}+2}=2+\frac{1}{\sqrt{x}+2}\)
Để B lớn nhất thì \(\frac{1}{\sqrt{x}+2}\) lớn nhất hay \(\sqrt{x}+2\) nhỏ nhất
Có: \(\sqrt{x}+2\ge0\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Khi x = 0 thì \(B=\frac{2\sqrt{0}+5}{\sqrt{0}+2}=\frac{0+5}{0+2}=\frac{5}{2}\)
Vậy GTLN của B là \(\frac{5}{2}\) khi x = 0
Ta có: \(\sqrt{x+1}\ge0\)
=> \(\sqrt{x+1}+5\ge5\)
=> GTNN của M là 5
(đề là tìm GTLN thật ak?)
minh ko chac dau nha
cá chắc mình sai đấy