Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=4x+\frac{3}{\left(x+1\right)^2}=2x+2+2x+2+\frac{3}{\left(x+1\right)^2}-4\ge3\sqrt[3]{\left(2x+2\right)^2.\frac{3}{\left(x+1\right)^2}}-4\)
\(=3\sqrt[3]{48}-4\)
Dấu \(=\)khi \(2x+2=\frac{3}{\left(x+1\right)^2}\Leftrightarrow\left(x+1\right)^3=\frac{3}{2}\Leftrightarrow x=\sqrt[3]{\frac{3}{2}}-1\).
\(f\left(x\right)\ge\dfrac{\left(\sqrt{2}+2\right)^2}{x+2-x}-1=2+2\sqrt{2}\)
\(f\left(x\right)_{min}=2+2\sqrt{2}\) khi
\(x=2\sqrt{2}-2\)
y = (x² - 1)(x + 3)(x + 5)
= [(x - 1)(x + 5)].[(x + 1)(x + 3)]
= (x² + 4x - 5)(x² + 4x + 3)
= [x² + 4x - 1) - 4].[(x² + 4x - 1) + 4]
= (x² + 4x - 1)² - 16 ≥ - 16
- Khi x = 0 ⇒ y = - 15
- Khi x = 1 ⇒ y = 0
- Khi x² + 4x - 1 = 0 ⇔ x = √5 - 2 ( loại giá trị x = - √5 - 2 < 0) ⇒ y = - 16
Vậy trên đoạn [0; 1] thì :
GTNN của y = - 16 khi x = √5 - 2
GTLN của y = 0 khi x = 1
Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)
Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất
Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
g(m) đạt lớn nhất khi m=5/2
m cần tìm là 5/2
\(P\left(x\right)=3x^2-\left[3f\left(x\right)+1\right]x+3-f\left(x\right)=0\left(1\right)\)
Phương trình (1) có nghiệm thuộc \(\left(0;\frac{2}{3}\right)\) khi:
\(\hept{\begin{cases}\Delta=9f^2\left(x\right)+18f\left(x\right)-35\ge0\\P\left(0\right)=3-f\left(x\right)>0\\P\left(\frac{2}{3}\right)=\frac{11}{3}-3f\left(x\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}f\left(x\right)\le\frac{-3-2\sqrt{11}}{3}\left(h\right)f\left(x\right)\ge\frac{-3+2\sqrt{11}}{3}\\f\left(x\right)< 3\\f\left(x\right)< \frac{11}{9}\end{cases}}}\)
\(\Rightarrow f\left(x\right)\in(-\infty;\frac{-3-2\sqrt{11}}{3}]\)U\([\frac{-3+2\sqrt{11}}{3};\frac{11}{9})\)
Dễ thấy \(f\left(x\right)>0\forall x\in\left(0;\frac{2}{3}\right)\). Suy ra \(\frac{-3+2\sqrt{11}}{3}\le f\left(x\right)< \frac{11}{9}\)
Vậy \(minf\left(x\right)=\frac{-3+2\sqrt{11}}{3}\), đạt được khi \(x=\frac{-1+\sqrt{11}}{3}.\)
Bước 1: Vẽ đường thẳng \(d_1: y-2x=2\) đi qua (0;2) và (-1;0).
Lấy điểm O(0;0) không thuộc \(d_1\). Vì 0-2.0=0<2 nên O thuộc miền nghiệm
Miền nghiệm của BPT \(y - 2x \le 2\) là nửa mp bờ \(d_1\), chứa điểm O.
Bước 2: Vẽ đường thẳng \(d_2: y=4\) đi qua (0;4) và (1;4).
Lấy điểm O(0;0) không thuộc \(d_2\). Vì 0<4 nên O thuộc miền nghiệm.
Miền nghiệm của BPT \(y \le 4\) là nửa mp bờ \(d_2\), chứa điểm O.
Bước 3: Vẽ đường thẳng \(d_3: x=5\) đi qua (5;0) và (5;1).
Lấy điểm O(0;0) không thuộc \(d_3\). Vì 0<5 nên O thuộc miền nghiệm
Miền nghiệm của BPT \(x \le 5\) là nửa mp bờ \(d_3\), chứa điểm O.
Bước 4: Vẽ đường thẳng \(d_4: x + y = - 1\) đi qua (-1;0) và (0;-1).
Lấy điểm O(0;0) không thuộc \(d_4\). Vì 0+0=0>-1 nên O thuộc miền nghiệm.
Miền nghiệm của BPT \(x + y \ge - 1\) là nửa mp bờ \(d_4\), chứa điểm O.
Miền biểu diễn nghiệm của hệ bất phương trình là miền tứ giác ABCD với
A(1;4); B(5;4), C(5;-6); D(-1;0).
Giá trị F tại các điểm A, B, C, D lần lượt là:
\(F\left( {1;4} \right) = - 1 - 4 = - 5\)
\(F\left( {5;4} \right) = - 5 - 4 = - 9\)
\(F\left( {5;-6} \right) = - 5 - (-6) = 1\)
\(F\left( { - 1;0} \right) = - \left( { - 1} \right) - 0 = 1\)
Vậy giá trị lớn nhất của biểu thức F(x;y) là 1 và giá trị nhỏ nhất của biểu thức F(x;y) là -9.
đây nha