Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=19-6x-9x^2\)
\(-M=9x^2+6x-19\)
\(=\left(9x^2+6x+1\right)-20\)
\(=\left(3x+1\right)^2-20\)
\(Do\)\(\left(3x+1\right)^2\ge0\)\(\forall x\)
=>\(\left(3x+1\right)^2-20\ge-20\)\(\forall x\)
=>\(-M\ge-20\)\(\forall x\)
=> \(M\le20\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(3x+1\right)^2=0\)
<=> \(3x+1=0\)
<=> \(3x=-1\)
<=> \(x=\frac{-1}{3}\)
Vậy \(M_{max}\)\(\le20\)\(khi\)\(x=\frac{-1}{3}\)
\(N=1+4x-x^2\)
\(-N=x^2-4x+1\)
\(=\left(x^2-4x+4\right)-3\)
\(=\left(x-2\right)^2-3\)
\(Do\)\(\left(x-2\right)^2\)\(\ge0\)\(\forall x\)
=>\(\left(x-2\right)^2-3\)\(\ge-3\)\(\forall x\)
=>\(-N\ge-3\)\(\forall x\)
=>\(N\le3\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(x+2\right)^2=0\)
<=> \(x+2=0\)
<=>\(x=-2\)
Vậy \(N_{max}\)\(\le3\)\(khi\)\(x=-2\)
Chúc bạn học tốt ~! :)
+) \(M=19-6x-9x^2=-9x^2-6x+19=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\Rightarrow M=-\left(3x+1\right)^2+20\le20\)
Dấu "=" xảy ra khi -(3x+1)2=0 <=>x=-1/3
Vậy Mmax=20 khi x=-1/3
+) \(N=1+4x-x^2=-x^2+4x+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
tiếp tục giống M
1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)
\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)
2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
\(maxM=6\Leftrightarrow x=-1\)
3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)
\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
TL:
a,\(-\left(x^2-2x+1\right)+1\)1
\(-\left(x-1\right)^2+1\) \(\le\) 1
=>giá trị lớn nhất của biểu thức là 1
vậy........
b,\(-\left(9x^2+6x+1\right)+20\)
\(-\left(3x+1\right)^2+20\)
\(\le20\)
=>giá trị lớn nhất cuar biểu thức là 20
vậy.........
hc tốt
Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.
a) A=2x−x2A=2x−x2+1−1A=1−(x2−2x+1)A=1−(x−1)2Do (x−1)2≥0∀x⇒A=1−(x−1)2≤1∀x Dấu “=” xảy ra khi: (x−1)2=0⇔x−1=0⇔x=1Vậy MaxA=1 khi x=1
b) B=19−6x−9x2B=20−1−6x−9x2B=20−(1+6x+9x2)B=20−(1+3x)2Do (1+3x)2≥0∀x⇒B=20−(1+3x)2≤20∀xDấu "=" xảy ra khi:(1+3x)2=0⇔1+3x=0⇔3x=−1⇔x=−13Vậy MaxB=20 khi x=−13
\(A\left(x\right)=\dfrac{4x^4+81}{2x^2-6x+9}\)
\(=\dfrac{4x^4+36x^2+81-36x^2}{2x^2-6x+9}\)
\(=\dfrac{\left(2x^2+9\right)^2-\left(6x\right)^2}{2x^2+9-6x}\)
\(=\dfrac{\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)}{2x^2+9-6x}\)
\(=2x^2+6x+9\)
=>\(M\left(x\right)=2x^2+6x+9\)
\(=2\left(x^2+3x+\dfrac{9}{2}\right)\)
\(=2\left(x^2+3x+\dfrac{9}{4}+\dfrac{9}{4}\right)\)
\(=2\left(x+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{3}{2}=0\)
=>\(x=-\dfrac{3}{2}\)
\(4x^2-12x+11=\left(2x\right)^2-2.x.6+36-\) \(25\)
= \(\left(2x-6\right)^2-25>=-25\)
A đạt GTNN = -25 <=> \(\left(2x-6\right)^2=0\)
<=> \(x=3\)
các câu còn lại tương tự
TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC
\(a,A=4x^2-12x+11\)
\(A=4x^2-12x+9+2\)
\(A=\left(2x-3\right)^2+2\)
Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)
Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)
\(b,B=x^2-x+1\)
\(B=x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(B=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Nhận xét: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy \(minB=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(c,C=-x^2+6x-15\)
\(C=-\left(x^2-6x+15\right)\)
\(C=-\left(x^2-6x+4+11\right)\)
\(C=-\left[\left(x-2\right)^2+11\right]\)
\(C=-\left(x-2\right)^2-11\)
Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-11\le-11\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(maxC=-11\Leftrightarrow x=2\)
\(d,D=\left(x-3\right)\left(1-x\right)-2\)
\(D=x-x^2-3+3x-2\)
\(D=-x^2+4x-5\)
\(D=-\left(x^2-4x+5\right)\)
\(D=-\left(x^2-4x+4+1\right)\)
\(D=-\left[\left(x-2\right)^2+1\right]\)
\(D=-\left(x-2\right)^2-1\)
Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(maxD=-1\Leftrightarrow x=2\)
\(M=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\) ≤ 20
⇒ \(M_{MAX}=20."="\) xảy ra khi : \(x=-\dfrac{1}{3}\)
\(N=1+4x-x^2=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\) ≤ 5
⇒ \(N_{MAX}=5."="\) xảy ra khi : \(x=2\)