\(y=\sqrt{2\left(1+\cos x\right)}+1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

a) Ta có:

−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cos⁡x≤1,∀x∈R⇔0≤1+cos⁡x≤2⇔0≤2(1+cos⁡x)≤4⇔1≤2(1+cos⁡x+1≤3

Vậy y ≤ 3, ∀ x ∈ R

Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)

Vậy ymax = 3 khi x = k2π

b) Ta có:

Với mọi x ∈ R, ta có:

sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin⁡(x−π6)≤1⇔3sin⁡(x−π6)≤3⇔3sin⁡(x−π6)−2≤1⇔y≤1

Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z


18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

31 tháng 8 2016

a)y=2cos(x+π/3)

-1<=cos(x+π/3)<=1

<=>-2<=2cos(x+π/3)<=2

--->min=-2,max=2

31 tháng 8 2016

không có điều kiện hả bạn ?

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

31 tháng 3 2017

Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.

b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.

c) Hàm số đã cho không xác định khi và chỉ khi .

Hàm số đã cho có tập xác định là R {}.

d) Hàm số đã cho không xác định khi và chỉ khi

Hàm số đã cho có tập xác định là R {}.



4 tháng 4 2017

a) Cách 1: Ta có:

y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.

Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.

Cách 2:

y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1

Do đó, y' = 0.

b) Cách 1:

Áp dụng công thức tính đạo hàm của hàm số hợp

(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u

Ta được

y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,

vì cos = cos = .

Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.

Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên

cos2 = cos2 '

cos2 = cos2 .

Do đó

y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.

Do đó y' = 0.


 

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

d) Đồ thị hàm số \(y=\cos\left(x+\dfrac{\pi}{6}\right)\) thu được từ đồ thị \(y=\cos x\) bằng cách tịnh tiến song song với trục hoành sang trái một đoạn bằng \(\dfrac{\pi}{6}\)

9 tháng 4 2017

a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.

Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó

y' = -16x3 +108x2 -162x -2.

b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.

c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .

d) y' = 2tanx.(tanx)' - (x2)' = .

e) y' = sin = sin.