K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

`C=-2x(x+7)=-2x^2-14x`

`=-(2x^2+14x)`

`=-( (\sqrt2x)^2 + 2.\sqrt2 x . (7\sqrt2)/2 + ((7\sqrt2)/2)^2 )+49/2`

`=-(\sqrt2x+(7\sqrt2)/2)^2+49/2`

`=> C_(max) = 49/2 <=> x=-7/2`

`D=-3x^2+5x-9`

`=-(3x^2-5x+9)`

`=-((\sqrt3x)^2 - 2.\sqrt3x . (5\sqrt3)/6 + ((5\sqrt3)/6)^2)-83/12`

`=-(\sqrt3x-(5\sqrt3)/6)^2-83/12`

`=> D_(max)=-83/12 <=> \sqrt3x - (5\sqrt3)/6=0 <=> x=5/6`

18 tháng 7 2021

Cảm ơn bạn nhiều. Cho mình hỏi, Max C mình ra 21/2 thì có đúng ko? Mặc dù x=-7/2 giống như bạn làm.

26 tháng 9 2016

a)1
b)6,25
c)7
d)281/64
e)5

2 tháng 4 2018

a) Đặt A = \(3x^2+6x+4\)

\(A=3\left(x^2+2x+1\right)+1\)

\(A=3\left(x+1\right)^2+1\)

Mà \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)

Vậy Min A =1 khi x = -1

22 tháng 5 2017

Bài 5:

a/A = x2 - 6x + 10 = x2 - 6x + 9 + 1 = ( x - 3 )2 +1

Vì ( x - 3 )2  \(\ge\)0  nên ( x - 3 )2 + 1 \(\ge\)1

Giá trị nhỏ nhất của A là 1

b/ B = x ( x + 6 ) = x2 + 6x + 9 - 9 = ( x + 3 )2 - 9 

Vì ( x + 3 )\(\ge\)0  nên ( x + 3 ) - 9\(\ge\)- 9

Giá trị nhỏ nhất của B là - 9

22 tháng 5 2017

5  -  A\(=x^2-6x+10\)

     A\(=x^2-3x-3x+9+1\)

    A\(=x\left(x-3\right)-3\left(x-3\right)+1\)

    A\(=\left(x-3\right)\left(x-3\right)+1\)

    A\(=\left(x-3\right)^2+1\)

Vì \(^{\left(x-3\right)^2\ge0\forall x}\)

\(\rightarrow\left(x-3\right)^2+1\ge1\forall x\)

Hay A\(\ge1\forall x\)

Dấu '' = '' xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

B\(=x\left(x+6\right)\)

B\(=x^2+6x\)

B\(=x\left(x+3\right)+3\left(x+3\right)-9\)

B\(=\left(x+3\right)\left(x+3\right)-9\)

B\(=\left(x+3\right)^2-9\)

\(\left(x+3\right)^2\ge0\forall x\)

\(\rightarrow\left(x+3\right)^2-9\ge-9\forall x\)

Hay B\(\ge-9\forall x\)

Dấu ''='' xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

30 tháng 9 2018

a)  

\(B=4x^2+4x+2\)

\(=4x^2+4x+1+1\)

\(=\left(2x+1\right)^2+1\)

Nhận thấy:   \(\left(2x+1\right)^2\ge0\)

=>   \(\left(2x+1\right)^2+1>0\)

hay B luôn dương

7 tháng 7 2019

a)

A=\(x^2+5x+7=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

C=\(3x^2-6x+5=\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2\right]-\left(\sqrt{3}\right)^2+5\ge2 \)

b)

C=\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Ta có :\(\left(x-2\right)^2+1\ge1\Leftrightarrow-\left[\left(x-2\right)^2+1\right]\le\)-1

25 tháng 6 2017

a) \(A=x^2-6x+15\)

\(A=x^2+6x+9+6\)

\(A=\left(x+3\right)^2+6\ge6\)

vậy Min A=6\(\Leftrightarrow\)x=-3

b) Min B=4x

c) \(C=2x^2-6x+4\)

d) \(D=x^2+x+1\)

\(=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

vậy Min D\(=\frac{3}{4}\Leftrightarrow x=-\frac{1}{2}\)

25 tháng 6 2017

Ta có : A = x2 - 6x + 15

=> A = x2 - 2.x.3 + 9 + 6

=> A = x2 - 2.x.3 + 32 + 6

=> A = (x - 3)2 + 6 

Mà : (x - 3)\(\ge0\forall x\in R\)

Nên : (x - 3)2 + 6 \(\ge6\forall x\in R\)

Vậy GTNN của A là 6 khi x = 3

5 tháng 7 2017

a) 5x^2-(2x+1)(x-2)-x(3x+3)+7
= 5x^2-2x^2+4x-x+2-3x^2-3x+7
= 9
Suy ra  5x^2-(2x+1)(x-2)-x(3x+3)+7 ko phụ thuộc vào giá trị của biến x
b) (3x-1)(2x+3)-(x-5)(6x-1)-38x
= 6x^2+9x-2x-3-6x^2+x+30x-5-38x
=-8
Suy ra (3x-1)(2x+3)-(x-5)(6x-1)-38x ko phụ thuộc vào giá trị biến của x
c) (5x-2)(x+1)-(x-3)(5x+1)-17(x-2)
= 5x^2+5x-2x-2-5x^2-x-15x-3-17x+2
= -3
Suy ra (5x-2)(x+1)-(x-3)(5x+1)-17(x-2) ko phụ thuộc vào giá trị của biến x
d) (4x-5)(x+2)-(x+5)(x-3)-3x^2-x
= 4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x
=5
Suy ra  (4x-5)(x+2)-(x+5)(x-3)-3x^2-x ko phụ thuộc vào giá trị của biến x
k mik nha 
Chúc bạn học giỏi 

5 tháng 7 2017

a) =5x2-2x2+3x+2-3x2-3x+7

    =2+7=9