Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=25\)vào B:
=> \(B=\frac{2}{\sqrt{25}-6}=\frac{2}{5-6}=\frac{2}{-1}=-2\)
b); c) Bạn quy đồng mẫu số là ra A; Ra luôn P nhé
\(x=\frac{3}{4}\Rightarrow y=0\)
\(x\ne\frac{3}{4}\Rightarrow Ax^2+A=6-8x\)
\(\Leftrightarrow Ax^2+8x+A-6=0\)
\(\Delta'=16-A\left(A-6\right)\ge0\)
\(\Leftrightarrow-A^2+6A+16\ge0\Rightarrow-2\le A\le8\)
\(A_{min}=-2\) khi \(x=2\)
\(A_{max}=8\) khi \(x=-\frac{1}{2}\)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
a) ĐKXĐ: \(\hept{\begin{cases}x-9\ne0\\\sqrt{x}\ge0\\\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ge0\\x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne9\\x>0\end{cases}}}\)
\(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-9}\)
b) \(x=\sqrt{6+4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(\Leftrightarrow x=\sqrt{4+4\sqrt{2}+2}-\sqrt{2+2\sqrt{2}+1}\)
\(\Leftrightarrow x=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(\Leftrightarrow x=\left|2+\sqrt{2}\right|-\left|\sqrt{2}+1\right|\)
\(\Leftrightarrow x=2+\sqrt{2}-\sqrt{2}-1=1\left(TM\right)\)
Vậy với x= 1 thì giá trị của biểu thức \(A=\frac{\left(1+1\right)\left(1-3\right)}{1-9}=\frac{2.\left(-2\right)}{-8}=\frac{-4}{-8}=\frac{1}{2}\)
c)
Ta có :
\(\frac{x-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)
+) \(\frac{1}{A}\)nguyên
\(\Leftrightarrow1+\frac{2}{\sqrt{x}+1}\)nguyên
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)
\(\Leftrightarrow x=1\)
Vậy ..............
\(A=\sqrt{\left(x-4\right)^2+4}-12\ge\sqrt{4}-12=-10\)
\(\Rightarrow A_{min}=-10\) khi \(x=4\)
\(B=2\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}\ge2\sqrt{\frac{11}{4}}=\sqrt{11}\)
\(B_{min}=\sqrt{11}\) khi \(x=-\frac{3}{2}\)
\(C=\frac{3}{1+\sqrt{9-\left(x-1\right)^2}}\ge\frac{3}{1+\sqrt{9}}=\frac{3}{4}\) (để chặt chẽ thì cần tìm ĐKXĐ cho căn thức trước, bạn tự tìm)
Bài 2:
\(A=\sqrt{7-2x^2}\le\sqrt{7}\)
\(A_{max}=\sqrt{7}\) khi \(x=0\)
\(B=\sqrt{7-\left(2x+1\right)^2}+5\le\sqrt{7}+5\) (cần ĐKXĐ)
\(B_{max}=\sqrt{7}+5\) khi \(x=-\frac{1}{2}\)
\(C=7+\sqrt{1-\left(2x-1\right)^2}\le7+\sqrt{1}=8\) (cần tìm ĐKXĐ)
\(C_{max}=8\) khi \(x=\frac{1}{2}\)