K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2022

\(9-9x^2+2x-\dfrac{2}{9}\\ =-\left(9x^2-2x+\dfrac{1}{9}-\dfrac{80}{9}\right)\\ =-\left(3x+\dfrac{1}{3}\right)^2+\dfrac{80}{9}\le\dfrac{80}{9}\)

Dấu "=" xảy ra khi \(-\left(3x+\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow3x+\dfrac{1}{3}=0\\ \Leftrightarrow3x=-\dfrac{1}{3}\\ \Leftrightarrow x=-\dfrac{1}{9}\)

Vậy \(Max=\dfrac{80}{9}\Leftrightarrow x=-\dfrac{1}{9}\)

30 tháng 5 2022

9 - 9x2 + 2x - \(\dfrac{2}{9}\)
=\(\dfrac{80}{9}\)-[(3x)2-2x+(\(\dfrac{1}{3}\))2]
=\(\dfrac{80}{9}\)-(3x-\(\dfrac{1}{3}\))2
Vì (3x-\(\dfrac{1}{3}\))2≥0 ⇒-(3x-\(\dfrac{1}{3}\))2≤0⇒\(\dfrac{80}{9}\)-(3x-\(\dfrac{1}{3}\))2\(\dfrac{80}{9}\)
Trường hợp dấu bằng xảy ra khi: (3x-\(\dfrac{1}{3}\))2=0⇒3x-\(\dfrac{1}{3}\)=0⇒3x=\(\dfrac{1}{3}\)⇒x=\(\dfrac{1}{9}\)
Vậy GTLN của biểu thức là \(\dfrac{80}{9}\) khi x=\(\dfrac{1}{9}\)

 

 
15 tháng 7 2021

a, \(A=4-2x^2\le4\)

Dấu ''='' xảy ra khi x = 0 

Vậy GTLN A là 4 khi x = 0 

b, \(B=-x^2+10x-5=-\left(x^2-10x+5\right)=-\left(x^2-10x+25-20\right)\)

\(=-\left(x-5\right)^2+20\le20\)Dấu ''='' xảy ra khi x = 5

Vậy GTLN B là 20 khi x = 5 

c, \(C=-3x^2+3x-5=-3\left(x^2-x+\frac{5}{3}\right)\)

\(=-3\left(x^2-x+\frac{1}{4}+\frac{17}{12}\right)=-3\left(x-\frac{1}{2}\right)^2-\frac{51}{12}\le-\frac{51}{21}=-\frac{17}{7}\)

Vậy GTLN C là -17/7 khi x = 1/2 

d, tương tự 

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

NV
27 tháng 6 2019

\(E=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\Rightarrow E_{min}=-\frac{5}{4}\) khi \(x=-\frac{3}{2}\)

\(F=\left(x^2+5x+4\right)\left(x^2+5x+6\right)=\left(x^2+5x+4\right)+2\left(x^2+5x+4\right)+1-1\)

\(F=\left(x^2+5x+5\right)^2-1\ge-1\)

\(\Rightarrow E_{min}=-1\) khi \(x^2+5x+5=0\Rightarrow x=\frac{-5\pm\sqrt{5}}{2}\)

\(M=\frac{2}{-4-\left(3x-1\right)^2}\ge\frac{2}{-4}=-\frac{1}{2}\Rightarrow M_{min}=-\frac{1}{2}\) khi \(x=\frac{1}{3}\)

\(P=\frac{x^2+2x+3}{x^2+2}\Rightarrow Px^2+2P=x^2+2x+3\)

\(\Rightarrow\left(P-1\right)x^2-2x+2P-3=0\)

\(\Delta'=1-\left(P-1\right)\left(2P-3\right)\ge0\)

\(\Leftrightarrow-2P^2+5P-2\ge0\Rightarrow\frac{1}{2}\le P\le2\)

\(\Rightarrow P_{max}=2\) khi \(x=1\)

\(P_{min}=\frac{1}{2}\) khi \(x=-2\)

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

25 tháng 6 2019

TL:

a,\(-\left(x^2-2x+1\right)+1\)1

\(-\left(x-1\right)^2+1\) \(\le\) 1

=>giá trị lớn nhất của biểu thức là 1

vậy........

b,\(-\left(9x^2+6x+1\right)+20\) 

   \(-\left(3x+1\right)^2+20\) 

  \(\le20\) 

=>giá trị lớn nhất cuar biểu thức là 20

vậy.........

hc tốt

Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.

a) A=2xx2A=2xx2+11A=1(x22x+1)A=1(x1)2Do (x1)20xA=1(x1)21x Du “=” xy ra khi: (x1)2=0x1=0x=1Vy MaxA=1 khi x=1

b) B=196x9x2B=2016x9x2B=20(1+6x+9x2)B=20(1+3x)2Do (1+3x)20xB=20(1+3x)220xDu "=" xy ra khi:(1+3x)2=01+3x=03x=1x=13Vy MaxB=20 khi x=13

25 tháng 11 2017

* Tìm giá trị lớn nhất :
\(x^{2}\) + \(y^{2}\) +xy = \(\dfrac {9}{2}\)
\(\Leftrightarrow\) \(2x^{2}\) + \(2y^{2}\) + 2xy = 9
\(\Leftrightarrow\) \(x^{2}\) +\( y{2} = 9- ( x+y)^{2} \le 9 \)

Dấu " = " xảy ra khi và chỉ khi x= \(\sqrt{4,5}\) ; y =- \(\sqrt{4,5}\) hoặc ngược lại

Vậy Max A= \(x^2 + y^2 =9\) \(\Leftrightarrow\)x= \(\sqrt{4,5}\) ; y =- \(\sqrt{4,5}\) hoặc ngược lại

* Tìm giá trị nhỏ nhất :

\(x^2 + y^2 + xy = \dfrac {9}{2} \)

\(\Leftrightarrow\)\( 2x^{2} + 2y^{2} + 2xy = 9\)

\(\Leftrightarrow\) \(3 ( x^2 + y^2 ) = 9 + ( x-y ) ^2 \ge 9 \)

\(\Leftrightarrow\) \(A = x^2 + y^2 \ge \)3 Dấu " = " xảy ra \(\Leftrightarrow\) \( \begin{cases} x-y=0\\x^2 + y^2 = 3 \end{cases}\) \(\Leftrightarrow\) x=y= \(\sqrt{1,5}\)

Vậy Min A = 3 \(\Leftrightarrow\)x=y= \(\sqrt{1,5}\)

25 tháng 11 2017

* Tìm giá trị lớn nhất :
x^{2} + y^{2) +xy = \dfrac {9}{2}
\(\Leftrightarrow\) 2x^{2} + 2y^{2} + 2xy = 9
\(\Leftrightarrow\) x^{2} + y{2} = 9- ( x+y)^{2} \le 9

Dấu " = " xảy ra khi và chỉ khi x= \(\sqrt{4,5}\) ; y =- \(\sqrt{4,5}\) hoặc ngược lại

Vậy Max A= x^2 + y^2 =9 \(\Leftrightarrow\)x= \(\sqrt{4,5}\) ; y =- \(\sqrt{4,5}\) hoặc ngược lại

* Tìm giá trị nhỏ nhất :

x^2 + y^2 + xy = \dfrac {9}{2}

\(\Leftrightarrow\) 2x^{2} + 2y^{2} + 2xy = 9

\(\Leftrightarrow\) 3 ( x^2 + y^2 ) = 9 + ( x- y ) ^2 \ge 9

\(\Leftrightarrow\) A = x^2 + y^2 \ge 3 Dấu " = " xảy ra \(\Leftrightarrow\) \( \begin{cases} x-y=0\\x^2 + y^2 = 3 \end{cases}\) \(\Leftrightarrow\) x=y= \(\sqrt{1,5}\)

Vậy Min A = 3 \(\Leftrightarrow\)x=y= \(\sqrt{1,5}\)

9 tháng 3 2020

các bạn đi học chưa hả?

9 tháng 3 2020

Chưa bạn