K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

Ta có

Q   =   8   –   8 x   –   x 2     =   - x 2   –   8 x   –   16   +   16   +   8   =   - ( x   +   4 ) 2   +   24     =   24   –   ( x   +   4 ) 2

 

Nhận thấy ( x   +   4 ) 2   ≥   0 ; Ɐx

=>   24   –   ( x   +   4 ) 2   ≤   24

Dấu “=” xẩy ra khi ( x   +   4 ) 2   =   0 ó x = -4

Giá trị lớn nhất của Q là 24 khi x = -4

Đáp án cần chọn là: D

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

25 tháng 7 2016

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+10+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+19670+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)20+21=21

Dấu = khi x+4=0 <=>x=-4

10 tháng 10 2017

Bài 1:

c)C=x2+5x+8

=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)

=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)

Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)

4 tháng 6 2018

b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)

Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất

=> 1/x-5=-1

=>x-5=-1

=>x=4

Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4

27 tháng 9 2019

a) x 2 và x  ≠  0

b) Rút gọn được Q = x + 1 2 x  

c) Thay x = 2017 (TMĐK) vào Q ta được Q = 1009 2017

26 tháng 9 2016

a)1
b)6,25
c)7
d)281/64
e)5

2 tháng 4 2018

a) Đặt A = \(3x^2+6x+4\)

\(A=3\left(x^2+2x+1\right)+1\)

\(A=3\left(x+1\right)^2+1\)

Mà \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)

Vậy Min A =1 khi x = -1

22 tháng 5 2017

Bài 5:

a/A = x2 - 6x + 10 = x2 - 6x + 9 + 1 = ( x - 3 )2 +1

Vì ( x - 3 )2  \(\ge\)0  nên ( x - 3 )2 + 1 \(\ge\)1

Giá trị nhỏ nhất của A là 1

b/ B = x ( x + 6 ) = x2 + 6x + 9 - 9 = ( x + 3 )2 - 9 

Vì ( x + 3 )\(\ge\)0  nên ( x + 3 ) - 9\(\ge\)- 9

Giá trị nhỏ nhất của B là - 9

22 tháng 5 2017

5  -  A\(=x^2-6x+10\)

     A\(=x^2-3x-3x+9+1\)

    A\(=x\left(x-3\right)-3\left(x-3\right)+1\)

    A\(=\left(x-3\right)\left(x-3\right)+1\)

    A\(=\left(x-3\right)^2+1\)

Vì \(^{\left(x-3\right)^2\ge0\forall x}\)

\(\rightarrow\left(x-3\right)^2+1\ge1\forall x\)

Hay A\(\ge1\forall x\)

Dấu '' = '' xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

B\(=x\left(x+6\right)\)

B\(=x^2+6x\)

B\(=x\left(x+3\right)+3\left(x+3\right)-9\)

B\(=\left(x+3\right)\left(x+3\right)-9\)

B\(=\left(x+3\right)^2-9\)

\(\left(x+3\right)^2\ge0\forall x\)

\(\rightarrow\left(x+3\right)^2-9\ge-9\forall x\)

Hay B\(\ge-9\forall x\)

Dấu ''='' xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

1 tháng 12 2018

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

2 tháng 12 2018

Thanks bạn ;)

26 tháng 7 2018

\(A=-2x^2+5x-8=-2\left(x^2-\frac{5}{2}x+4\right)\)

\(=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{39}{16}\right)=-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\)

Vì: \(-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\le\frac{39}{8}\forall x\)

GTLN  của bt là 39/8 tại \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)

cn lại lm tg tự  nha bn