K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Áp dụng hệ quả BĐT thức Côsi với 3 số : (a+b+c )3 > 27abc ta có: xyz < = (x+y+z)3/27 ; (x+y)(y+z)(z+x) < = ( x+y+z+x+y+z)/27

==> M < = (23/27)(43/27)=512/729

==> M max = 512/729 <=> x = y = z = 2/3

29 tháng 1 2022

Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)

\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)

"=" xảy ra khi y = 2 ; x = 1 ; z = 1

29 tháng 1 2022

Giúp mình câu này với ah.

 

7 tháng 9 2021

\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:

Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$

$\Rightarrow H\leq \frac{z(4-z)^2}{4}$

Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$

$4-z\leq 2$ do $z\geq 2$

$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$

Hay $H\leq 2$ 

Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$

13 tháng 5 2017

Ta chứng minh được các bất đẳng thức bằng biến đổi tương đương và bất đẳng thức Cô-si:

\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\)

\(\Rightarrow\frac{xyz}{xy+yz+zx}\le\frac{\sqrt[3]{xyz}}{3}\)

Mà \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\)

Vậy \(A\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}.\frac{\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}\)

\(A\le\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{3}=\frac{3+\sqrt{3}}{3}\)

31 tháng 12 2020

Ta có: \(x+y+z=xyz\Leftrightarrow x=\frac{x+y+z}{yz}\Leftrightarrow x^2=\frac{x^2+xy+xz}{yz}\Leftrightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)

Tương tự, ta được: \(\frac{1}{\sqrt{y^2+1}}=\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}\)\(\frac{1}{\sqrt{z^2+1}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

Cộng theo từng vế ba đẳng thức trên, ta được: \(P=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)\(\le\frac{\frac{y}{x+y}+\frac{z}{z+x}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}+\frac{y}{y+z}}{2}=\frac{3}{2}\)(BĐT Cô-si)

Đẳng thức xảy ra khi x = y = z = \(\sqrt{3}\)

28 tháng 10 2021

taị sao lại là căn 3 vậy ạ