Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2+1=x^2+xy+yz+zx\)
\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự:
\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)
\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
TH1: x,y,z <0
\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)
TH2: x,y,z>0
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)
Ta có \(1+z^2=xy+yz+zx+z^2\)
\(=y\left(x+z\right)+z\left(x+z\right)\)
\(=\left(x+z\right)\left(y+z\right)\)
CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)
Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)
Tương tự như thế, ta được
\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.
\(A=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-xy\sqrt{x}-xy\sqrt{y}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\sqrt{x}\left(1-y\right)+x\left(1-y\sqrt{y}\right)-y\left(1-\sqrt{y}\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{\left(1-\sqrt{y}\right)\left[x\sqrt{x}\left(1+\sqrt{y}\right)+x+x\sqrt{y}+xy-y\right]}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\sqrt{x}+x\sqrt{xy}+x+x\sqrt{y}+xy-y}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\left(\sqrt{x}+1\right)+x\sqrt{y}\left(\sqrt{x}+1\right)+y\left(x-1\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x+x\sqrt{y}+y\sqrt{x}-y}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)
Để A=2 thì x=2; y=2
\(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
\(=\sqrt{xy}+\sqrt{x}-\sqrt{y}\)
Ta có: \(P=\sqrt{xy}+\sqrt{x}-\sqrt{y}=2\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{y}+1\right)=3\)
\(\Rightarrow\left(\sqrt{x}-1,\sqrt{y}+1\right)=\left(1,3;3,1\right)\)
\(\Rightarrow\left(x,y\right)=\left(4,4;16,0\right)\)
\(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x\left(\sqrt{x}+1\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-yx\sqrt{x}-xy\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x+y+\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)+2\sqrt{xy}-xy-1}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=1-\dfrac{\left(\sqrt{xy}-1\right)^2}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}=2\\ \Rightarrow\dfrac{\left(\sqrt{xy}-1\right)^2}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}=1\\ \Leftrightarrow\left(\sqrt{xy}-1\right)^2=\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)\\ \Leftrightarrow xy-2\sqrt{xy}+1=\sqrt{x}-\sqrt{y}+1-\sqrt{xy}\\ \Leftrightarrow\sqrt{x}-\sqrt{y}-xy+\sqrt{xy}=0\)
tự giải quyết tiếp nhá :)) h có việc :)) nếu còn ko bt thì mai làm nốt cho :))
\(=\sqrt{xy}+\sqrt{x}-\sqrt{y}\)
\(P=2\Rightarrow\sqrt{xy}+\sqrt{x}-\sqrt{y}=2\)
\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=4;y=0\end{matrix}\right.\) (t/m)
làm thế nào để ra được P = \(\sqrt{xy}\)+ \(\sqrt{x}\)- \(\sqrt{y}\) vậy bn ?
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy