K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
22 tháng 10 2018

Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)

Thay x+y=5 vào A ta có :

\(A\ge\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy Amin = 4 <=> x >=-1 và y >=2

23 tháng 10 2018

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)

27 tháng 9 2020

a) Vì \(A=2-\left|x+\frac{5}{6}\right|\le2-0=2\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy Max(A) = 2 khi \(x=-\frac{5}{6}\)

b) Vì \(B=5-\left|\frac{2}{3}-x\right|\le5-0=5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|\frac{2}{3}-x\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy Max(B) = 5 khi \(x=\frac{2}{3}\)

8 tháng 12 2018

Biến đổi đề bài thành: Ax^2 = x^2 -2x +2011 <=> (A-1)x^2 +2x -2011=0 (*) 
+ Với A=1 thì pt (*) luôn có nghiệm x=2011/2 
+ Với A khác 1 thì pt(*) là pt bậc 2, nên để pt(*) có nghiệm thì đenta' phải >=0 
<=> 1^2 - (A-1).(-2011)>=0 <=> 1 + 2011.(A-1) >=0 <=> 2011A -2010 >=0 
<=> A>= 2010/2011 
Vậy Min của A= 2010/2011 khi x= 2011 

8 tháng 12 2018

\(B=\frac{x^2+2010}{x^2+5}=\frac{x^2+5+2005}{x^2+5}=1+\frac{2005}{x^2+5}\)

\(B_{max}\Rightarrow\left(\frac{2005}{x^2+5}\right)_{max}\Rightarrow\left(x^2+5\right)_{min}\)vì 2005 lớn hơn 0 và không đổi

\(x^2+5\ge5\). dấu = xảy ra khi x2=0 => x=0

Vậy \(B_{max}=402\Leftrightarrow x=0\)

15 tháng 12 2015

để \(B=\frac{1}{\sqrt{x}+5}\) thì \(\sqrt{x}+5\) nhỏ nhất

xét mẫu:\(\sqrt{x}+5\)

ta có:\(\sqrt{x}\ge0\)

nên : \(\sqrt{x}+5\ge5\)

vậy B=\(\frac{1}{\sqrt{x}+5}\) lớn nhất bằng \(\frac{1}{2}=0,2\)

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)