K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2024

\(B=5-x^2-8x\\ =\left(-x^2-8x-16\right)+21\\ =-\left(x^2+8x+16\right)+21\\ =-\left(x^2+2\cdot x\cdot4+4^2\right)+21\\ =-\left(x+4\right)^2+21\)

Ta có: `-(x+4)^2<=0` với mọi x 

`=>B=-(x+4)^2+21<=21` với mọi x 

Dấu "=" xảy ra: `x+4=0<=>x=-4` 

9 tháng 12 2021

\(B=\left(x-8x-3\right)\)

\(B=\left(x^2-2x4-16\right)+13\)

\(-B=\left(x^2+2x4+16\right)-13\)

\(-B=\left(x+4\right)^2-13\ge-13\)

\(B=-\left(x+4\right)^2+13\le13\)

Dấu "=" xảy ra khi và chỉ khi \(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\left(x+4^2\right)=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy GTLN của B là 13 khi và chỉ khi x=-4

4 tháng 8 2016

1-x-2x^2

= 1-x-2x.2x

= 1 - ( x + 2x.2x)

= 1 - 5x

Để 1-x-2x^2 mang giá trị lớn nhất thì x phài là số âm.

4 tháng 8 2016

\(A=1-x-2x^2\)

\(=-2\left(x^2+2\times x\times\frac{1}{4}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2-\frac{1}{2}\right)\)

\(=-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(\left(x+\frac{1}{4}\right)^2\ge0\)

\(\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\ge-\frac{9}{16}\)

\(-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\le\frac{9}{8}\)

Vậy Max A = \(\frac{9}{8}\) khi x = \(-\frac{1}{4}\)

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!

6 tháng 10 2018

Biểu thức A không có GTLN chỉ có GTNN thôi

b, Bạn thực hiện phép chia sẽ được dư là \(\left(a-1\right)x+b+6\)

Để \(x^3+4x^2+ax+b⋮x^2+x-2\) với mọi x thì:

\(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

Chúc bạn học tốt.

6 tháng 10 2018

vậy GTNN là bao nhiêu ạ ?

14 tháng 9 2018

A=9-4x-x2

  =-(9+4x+x2)

  =-((x+2)2+5) 

  =-(x+2)2-5          Mặt khác: -(x+2)2\(\le\)0

                                            =>-(x+2)2-5\(\le\)-5      Vậy MAX (A)=-5

B=2x-x2

B-1=2x-x2-1

B-1=-(-2x+x2+1)

B-1=-(x-1)2

B=-(x-1)2+1                      Mặt khác: -(x-1)2\(\le\)0

                                                       =>-(x-1)2+1\(\le\)1

NM
8 tháng 9 2021

ta có :

\(8x\left(3x-8\right)+6x\left(-4x+7\right)=-88\)

\(\Leftrightarrow24x^2-64x-24x^2+42x=-88\Leftrightarrow-22x=-88\Leftrightarrow x=4\)

8 tháng 9 2021

`8x (3x-8) +6x (-4x+7)=-88`

`-> 24x^2 - 64x - 24x^2 + 42x=-88`

`-> (24x^2 - 24x^2)+(-64x+42x)=-88`

`-> -22x=-88`

`->x=-88 : (-22)`

`->x=4`

Vậy `x=4`

6 tháng 10 2016

\(P=\frac{2}{-4x^2+8x-5}=\frac{2}{-\left(4x^2-8x+5\right)}\)

\(=\frac{2}{-\left(4x^2-8x+4+1\right)}\)\(=\frac{2}{-4\left(x+1\right)^2-1}\)

\(\ge\frac{2}{-1}=-2\)\(\Rightarrow P\ge-2\)

Dấu = khi \(x=-1\)

Vậy MinP=-2 khi x=-1

7 tháng 10 2016

Cảm ơn bạn nhiều nha ! :)

27 tháng 11 2018

\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)

\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)

\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)

\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)

\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)

b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)