Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\left(x-3\right)^2\ge0\forall x\in R\)
\(\left(x-3\right)^2+1\ge1\)
\(\frac{1}{\left(x-3\right)^2+1}\le1\)
\(\frac{5}{\left(x-3\right)^2+1}\le5\)
vậy gtln của bt là 5 khi x = 3
A = \(\frac{1}{13}\).\(\frac{-39}{x-7}\)= - \(\frac{39}{13\left(x-7\right)}\)= -\(\frac{3}{x-7}\)
A nhỏ nhất khi x - 7 = 3 => x = 10
A lơn nhất khi x - 7 = -3 => x = 4
điều kiên x khác {-1;-3}
P= \(\left(x+1-\frac{4}{x+1}\right):\frac{x+3}{x^2-2x-3}=\left(\frac{x^2+2x+1-4}{x+1}\right).\frac{\left(x-3\right)\left(x+1\right)}{x+3}\)
= \(\frac{\left(x^2+2x-3\right)\left(x-3\right)}{x+3}=\frac{\left(x-1\right)\left(x-3\right)\left(x+3\right)}{x+3}=\left(x-1\right)\left(x-3\right)\)
P= x2-4x+3=(x-2)2-1\(\ge\)-1
=> MinP=-1 khi x=2