Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Giả sử BĐT đúng , Bình phương 2 vế đc
\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ac+bd\right)\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\).Bình phương 2 vế đc
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow\left(ad-bc\right)^2\ge0\)(luôn đúng)
Vậy BĐT luôn đúng mà bạn ghi sai dấu
Áp dụng BĐT Bunhiacopski
ta có \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)
\(=\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)
Lúc đó \(\left(a+c\right)^2+\left(b+d\right)^2\)\(\le\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(ac+bd\le\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
Còn cách bình phương nó lên nữa nhưng dễ lẫn nên nếu chưa học Caushy-Schwarz thì nhắn nhé - NOTE: đây còn là BĐT Mincopski tìm cách c/m nó trên google cũng đầy
Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4\)
\(=\left(a+2\sqrt{ab}+b\right)^2+\left(a-2\sqrt{ab}+b\right)^2\)
\(=a^2+4ab+b^2+4a\sqrt{ab}+4b\sqrt{ab}+2ab+a^2+b^2-4a\sqrt{ab}-4b\sqrt{ab}+2ab\)
\(=2\left(a^2+b^2+6ab\right).\)(1)
Mà \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4\)(2)
Từ (1) và (2) suy ra:
\(\left(\sqrt{a}+\sqrt{b}\right)^4\le2\left(a^2+b^2+6ab\right).\)
Chứng minh tương tự ta cũng có:
\(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)
\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)
\(\left(\sqrt{b}+\sqrt{c}\right)^2\le2\left(b^2+c^2+6bc\right)\)
\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)
\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)
Suy ra :
\(A\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\right)\)
\(=6\left(a+b+c+d\right)^2\)
\(\le6.1^2=6\)
Vậy giá trị lớn nhất của \(A=6\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}.\)