K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Ta có : -x2 \(\le0\)

Nên : -x2 + 5 \(\le5\)

Vậy GTLN là 5 khi x = 0 

8 tháng 11 2018

a, -x2 + 5 

 Ta có: -x2 \(\le\)0  =>  -x2 + 5 \(\le\)5

Dấu " = " xảy ra khi -x2 = 0  =>  x2 = 0 =>  x = 0

Vậy GTLN của biểu thức -x2 + 5 là 5 khi x có giá trị là 0

b, -| x + 1 | - 3

Vì -| x + 1| \(\le\)0  =>  -| x + 1 | - 3 \(\le\)-3

Dấu "=" xảy ra khi  - | x+1|  = 0  =>  |x + 1| = 0  =>  x + 1 = 0  =>  x = -1

Vậy GTLN của biểu thức  - | x + 1 | - 3 là -3 khi x = - 1

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

2 tháng 1 2019

1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))

Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)

Vậy đề sai ~v  (hay là tui làm sai ta)

2 tháng 1 2019

1b) \(B=3\left|1-2x\right|-5\ge0-5=-5\)  (do \(\left|1-2x\right|\ge0\forall x\))

Dấu "=" xảy ra khi \(\left|1-2x\right|=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy \(B_{min}=-5\Leftrightarrow x=\frac{1}{2}\)

13 tháng 12 2018

Để B lớn nhất thì căn bậc hai của xphải nhỏ nhất

Vì xlà mũ chẵn nên x là nhỏ nhất có thể => x=0

Ta có:

\(B=3-\sqrt{0^2}-25\)

16 tháng 3 2018

a) Sửa đề: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=101x\)

Ta có: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|\ge0\Leftrightarrow101x\ge0\Leftrightarrow x\ge0\)

Khi \(x\ge0\)thì: \(pt\Leftrightarrow x-1+x-2+x-3+...+x-100=101x\)

\(\Rightarrow100x-\left(1+2+3+...+100\right)=101x\)

\(\Rightarrow-x=1+2+3+...+100=5050\Leftrightarrow x=-5050\)

b) \(A=3x-x^2-4\)

\(A=3x-x^2-\frac{9}{4}-\frac{7}{4}\)

\(A=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}\)

\(A=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)

Dấu "=" khi: \(x=\frac{3}{2}\)

3 tháng 7 2018

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

3 tháng 7 2018

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)

12 tháng 3 2017

Vì \(\left(x+2\right)^2\ge0\forall x;\left|y-\frac{1}{5}\right|\ge0\forall y\)

\(\Rightarrow\left(x+2\right)^2+\left|y-\frac{1}{5}\right|\ge0\forall x;y\)

\(\Rightarrow A=\left(x+2\right)^2+\left|y-\frac{1}{5}\right|-10\ge-10\forall x;y\)

Dấu "=" xảy ra <=> \(\left(x+2\right)^2=0;\left|y-\frac{1}{5}\right|=0\)

\(\Rightarrow x=-2;y=\frac{1}{5}\)

Vậy \(A_{min}=-10\) tại \(x=-2;y=\frac{1}{5}\)

18 tháng 9 2016

1/ Do ( x-7)2 >= 0 với mọi x => A= (x-7)2 + 1 >= 1 với mọi x

Dấu " = " xảy ra khi (x-7)2 = 0 => x-7=0 => x=7

Vậy minA= 1 tại x=7