K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là A. 0B.- \(\dfrac{5}{2}\)C. 3 hoặc -\(\dfrac{5}{2}\)câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:A. 1,5B. 1,25C. –1,25D. 3Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?A. x = -3 hoặc x =1B. x =3 hoặc x = -1C. x = -3 hoặc x = -1 5D. x =1 hoặc x = 3 Câu25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :A. –1,5B. –2,5C. –3,5D. –4,5Câu 26 Giá trị của...
Đọc tiếp

Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là 

A. 0

B.- \(\dfrac{5}{2}\)

C. 3 hoặc -\(\dfrac{5}{2}\)

câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:

A. 1,5

B. 1,25

C. –1,25

D. 3

Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?

A. x = -3 hoặc x =1

B. x =3 hoặc x = -1

C. x = -3 hoặc x = -1 5

D. x =1 hoặc x = 3 Câu

25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :

A. –1,5

B. –2,5

C. –3,5

D. –4,5

Câu 26 Giá trị của x thoả mãn (x + 3)3 – x(3x+1)2 + (2x + 1)(4x2 – 2x + 1) = 28 là: A. 0

B. -8 \(\dfrac{2}{3}\)

C. 0 hoặc 8\(\dfrac{2}{3}\)

D. 0 hoặc -8\(\dfrac{2}{3}\) 

 Câu 28 Tứ giác ABCD có 𝐴̂ = 1200 ; 𝐵̂ = 800 ; 𝐶̂ = 1000 thì:

A. 𝐷̂ = 600

B. 𝐷̂ = 900

C. 𝐷̂ = 400

D. 𝐷̂ = 1000

Câu 29 Cho ΔABC có I, K lần lượt là trung điểm của AB và AC Biết BC = 20cm. Tacó:

A. IK = 40 cm.

B. IK = 10 cm.

C. IK=5 cm.

D. IK= 15 cm.

3
1 tháng 11 2021

\(22,C\\ 23,C\\ 24,Sai.hết\\ 25,C\\ 28,A\\ 29,B\)

1 tháng 11 2021

22c; 23c; 24c; 25c, 29B

\(A=\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\left(ĐKXĐ:x\ne\pm3\right)\)

a, \(A=\dfrac{-\left(x-3\right)\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)}+\dfrac{x}{x+3}\)

\(=-1+\dfrac{x}{x+3}=\dfrac{-x-3+x}{x+3}=\dfrac{-3}{x+3}\)

b, \(x^2-2x-3=0\Leftrightarrow x^2-3x+x-3\Leftrightarrow x\left(x-3\right)+\left(x-3\right)\Leftrightarrow\left(x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

TH1 : Nếu x = 3 thì gt của biểu thức \(A=\dfrac{-3}{3+3}=-\dfrac{3}{6}=-\dfrac{1}{2}\)

TH2 : Nếu x = -2 thì gt của biểu thức \(A=\dfrac{-3}{-2+3}=-3\)

c, Để A nhận giá trị nguyên thì \(x+3\inƯ\left(3\right)\) ( Ư(-3 ) cũng được như nhau nhé ! )

Xét bảng :

x + 3 x
1 -2
-1 -4
3 0
-3 -6

Vậy để A nguyên thì \(x\in\left\{-6;-4;-2;0\right\}\)

 

11 tháng 3 2019

a) \(A=\frac{3x^2+6x+10}{x^2+2x+3}\)

\(A=\frac{3x^2+6x+9+1}{x^2+2x+3}\)

\(A=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}\)

\(A=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+1+2}\)

\(A=3+\frac{1}{^{\left(x+1\right)^2+2}}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

9 tháng 4 2022

sai

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

14 tháng 1 2021

Bài 1 : \(4\left(x-1\right)^2=x^2\Leftrightarrow4\left(x^2-2x+1\right)=x^2\)

\(\Leftrightarrow4x^2-8x+4-x^2=0\Leftrightarrow3x^2-8x+4=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\Leftrightarrow x=\frac{2}{3};2\)

Áp dụng với trung bình cộng 2 số : \(\frac{\frac{2}{3}+2}{2}=\frac{8}{\frac{3}{2}}=\frac{4}{3}\)

Bài 2 : Đặt A =  \(x^2-2x-3=x^2-2x+1-4=\left(x-1\right)^2-4\ge-4\)

Dấu ''='' xảy ra <=> x = 1 

Vậy GTNN A là -4 <=> x = 1

Bài 3 : \(x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\Leftrightarrow x=1;4\)

Tổng các giá trị x là : \(1+4=5\)

14 tháng 1 2021

3, Tổng các giá trị của x thỏa mãn:

\(x^2-5x+4=0\)

\(\Leftrightarrow x^2-4x-x+4=0\)

\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

Vậy tổng các giá trị x thỏa mãn phương trình: S = 4 + 1 = 5

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)