Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(-3)=10
f(0)=-8
f(1)=-6
f(2)=0
b: f(x)=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
a) Để \(f\left(x\right)=3\)
\(\Leftrightarrow\frac{2x+1}{2x+3}=3\)
\(\Leftrightarrow3.\left(2x+3\right)=2x+1\)
\(\Leftrightarrow6x+9=2x+1\)
\(\Leftrightarrow6x-2x=1-9\)
\(\Leftrightarrow4x=-8\)
\(\Leftrightarrow x=-2\)
Để f(x) nguyên
\(\Leftrightarrow2x+1⋮2x+3\)
\(\Leftrightarrow2x+3-2⋮2x+3\)
mà \(2x+3⋮2x+3\)
\(\Rightarrow2⋮2x+3\)
\(\Rightarrow2x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng rồi tìm x nguyên nhé
giúp làm cái jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
a) Thay f(-3) vào hàm số ta có :
y=f(-3)=2.(-3)2-8=10
Thay f(0) vào hàm số ta có :
y=(f0)=2.02-8=-8
Thay f(1) vào hàm số ta có :
y=f(1)=2.12-8=-6
Thay f(2) vào hàm số ta có :
y=f(2)=2.22-8=0
b) y=f(x)=0 <=> 2x2-8=0
2x2=8
x2=8:2
x2=4
=> x=2
\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|\)
a) Ta có: \(\left|x\right|=\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
+) Với \(x=\frac{1}{2}\):
\(f\left(\frac{1}{2}\right)=\left|\frac{1}{2}-2015\right|+\left|\frac{1}{2}+2016\right|=2\)
+) Với \(x=-\frac{1}{2}\)
\(f\left(-\frac{1}{2}\right)=\left|-\frac{1}{2}-2015\right|+\left|-\frac{1}{2}+2016\right|=0\)
c) Áp dụng BĐT |x| + |y| \(\ge\)|x + y|, ta được:
\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\)
\(\ge\left|\left(2015-x\right)+\left(x+2016\right)\right|=\left|4031\right|=4031\)
(Dấu "="\(\Leftrightarrow\left(2015-x\right)\left(x+2016\right)\ge0\)
TH1: \(\hept{\begin{cases}2015-x\ge0\\x+2016\ge0\end{cases}}\Leftrightarrow-2016\le x\le2015\)
TH2: \(\hept{\begin{cases}2015-x\le0\\x+2016\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le-2016\end{cases}}\left(L\right)\))
Vậy \(f\left(x\right)_{min}=4031\Leftrightarrow-2016\le x\le2015\)
\(\hept{\begin{cases}f\left(x\right)=x+1\\g\left(x\right)=x+\sqrt{\frac{4}{25}}=x+\frac{2}{5}\end{cases}}\)
\(g\left(0\right)=\frac{2}{5}\Rightarrow f\left(x\right)=\frac{2}{5}\Rightarrow x+1=\frac{2}{5}\Rightarrow x=-\frac{3}{5}\)
Vì f(x) = g(x)
suy ra 2x=-x+3
suy ra 3x=3
suy ra x=1