Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=-x^2-x+5=-\left(x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}-\frac{1}{4}-5\right)=-\left(x+\frac{1}{2}\right)^2+5\frac{1}{4}\le5\frac{1}{4}\)
vậy để b max thì \(-\left(x+\frac{1}{2}\right)^2max\) mà \(-\left(x+\frac{1}{2}\right)^2\le0\)nên suy ra \(-\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Giá trị lớn nhất của biểu thức frac{\sqrt{x}}{x+1} là
(Nhập kết quả dưới dạng số thập phân gọn nhất)
đặt \(\sqrt{3-x}=t\Rightarrow t^2=3-x=>x=3-t^2\) ĐK x<=3=> t>=0
E=t+3-t^2
E=3+1/4-(t-1/2)^2
=> E>=13/4 khi t=1/2=> x=11/4
Gọi đọ dài 2 cạnh góc vuông là a và b => Độ dài cạnh huyền là \(\sqrt{a^2+b^2}\)
Gọi đường cao là h.
=> Chu vi tam giác là: \(a+b+\sqrt{a^2+b^2}\)
Diện tích tam giác là: \(\frac{1}{2}.\sqrt{a^2+b^2}.h\)
Theo bài ra ta có: \(a+b+\sqrt{a^2+b^2}=\frac{1}{2}.\sqrt{a^2+b^2}.h\)
=> \(h=\frac{2a+2b+2\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}}=2+2.\frac{a+b}{\sqrt{a^2+b^2}}\)
Theo BĐT Bunhiacopxki có: \(\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
<=> \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
=> \(h\le2+2.\frac{\sqrt{2\left(a^2+b^2\right)}}{\sqrt{a^2+b^2}}=2+2\sqrt{2}\)
=> Giá trị lớn nhất của chiều cao thỏa mãn đk là: \(h_{max}=2+2\sqrt{2}\)
\(A=-x+\sqrt{x}+2\left(ĐK:x\ge0\right)\\ =-\left(x-\sqrt{x}-2\right)\\ =-\left(x-\sqrt{x}+\frac{1}{4}-\frac{9}{4}\right)\\ =-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{9}{4}\\ =-\left(\sqrt{x}-\frac{1}{2}\right)^2+2,25\)
Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\) với mọi x\(\ge\)0
=> \(-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\) vowis mọi x\(\ge0\)
=> \(-\left(x-\frac{1}{2}\right)^2+2,25\le2,25\) với mọi x\(\ge0\)
Vậy GTLN của A là 2,25 khi x=\(\frac{1}{2}\)
\(\frac{x+1}{x-1}=\frac{7}{3}\)
=> \(3.\left(x+1\right)=7.\left(x-1\right)\)
=> \(3x+3=7x-7\)
=> \(3x+10=7x\)
=> \(4x=10\)
=> \(x=\frac{10}{4}=\frac{5}{2}\)
Vậy \(x=\frac{5}{2}\)
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
\(A=\dfrac{5\sqrt{x}-3}{x+\sqrt{x}+1}\\ \Leftrightarrow Ax+A\sqrt{x}+A-5\sqrt{x}+3=0\\ \Leftrightarrow Ax+\sqrt{x}\left(A-5\right)+A+3=0\)
Coi đây là PT bậc 2 ẩn \(\sqrt{x}\), PT có nghiệm
\(\Leftrightarrow\Delta=\left(A-5\right)^2-4A\left(A+3\right)\ge0\\ \Leftrightarrow A^2-10A+25-4A^2-12A\ge0\\ \Leftrightarrow-3A^2-22A+25\ge0\\ \Leftrightarrow-\dfrac{25}{3}\le A\le1\)
Dấu \("="\Leftrightarrow\) PT có nghiệm kép \(\Leftrightarrow\sqrt{x}=\dfrac{5-A}{2A}=\dfrac{5x+8}{x+\sqrt{x}+1}\cdot\dfrac{x+\sqrt{x}+1}{10\sqrt{x}-6}\\ \Leftrightarrow\sqrt{x}=\dfrac{5x+8}{10\sqrt{x}-6}\Leftrightarrow10x-6\sqrt{x}=5x+8\\ \Leftrightarrow5x-6\sqrt{x}-8=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=-\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow x=4\)
Vậy \(A_{max}=1\Leftrightarrow x=4\)
\(B=-x^2-x+5\)
\(=-\left(x^2+x-5\right)\)
\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{21}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{21}{4}< =\dfrac{21}{4}\)
Dấu = xảy ra khi x=-0,5