K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2020

Xét \(\Delta'=m^2-4m+4=\left(m-2\right)^2\ge0\) luôn có nghiệm

Theo hệ thức Viete ta có:

\(x_1+x_2=2m;x_1x_2=4m-4\Rightarrow x_1=2m-x_2\)

\(\Leftrightarrow2x_2=2m-x_2\Leftrightarrow3x_2=2m\Leftrightarrow x_2=\frac{2m}{3}\Rightarrow x_1=\frac{4m}{3}\)

\(\Rightarrow\frac{2m}{3}\cdot\frac{4m}{3}=4m-4\Leftrightarrow8m^2-36m+36=0\)

\(\Leftrightarrow m=3;m=\frac{3}{2}\)

Vậy m=3;m=3/2 

Không chắc lắm đâu nha !

b: Δ=(-2m)^2-4(m^2-2m+2)

=4m^2-4m^2+8m-8=8m-8

Để pt có 2 nghiệm phân biệt thì 8m-8>0

=>m>1

x1^2+x2^2=x1+x2+8

=>(x1+x2)^2-2x1x2-(x1+x2)=8

=>(2m)^2-2(m^2-2m+2)-2m=8

=>4m^2-2m^2+4m-4-2m=8

=>2m^2+2m-12=0

=>m^2+m-6=0

=>(m+3)(m-2)=0

mà m>1

nên m=2

2 tháng 5 2022

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

2 tháng 12 2019

a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1                                              

b) Phương trình (1) có hai nghiệm  x 1 , x 2  khi và chỉ khi  Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2

Theo Vi-et , ta có:  x 1 + x 2 = m          1 x 1 . x 2 = m 2 − 2 2    2

Theo đề bài ta có:  A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2

Do  − 2 ≤ m ≤ 2  nên  m + 2 ≥ 0 m − 3 ≤ 0 . Suy ra  A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4

Vậy  MaxA = 25 4  khi  m = 1 2 .

=>(x1+x2)^2+x1x2=1

=>(-2m)^2+(-3)=1

=>4m^2=4

=>m=-1 hoặc m=1

25 tháng 5 2023

Do a = 1 và c = -3

⇒ a và c trái dấu

⇒ Phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

x₁ + x₂ = -2m

x₁x₂ = -3

Lại có:

x₁² + x₂² + 3x₁x₂ = 1

⇔ x₁² + 2x₁x₂ + x₂² + x₁x₂ = 1

⇔ (x₁ + x₂)² + x₁x₂ = 1

⇔ (-2m)² - 3 = 1

⇔ 4m² = 4

⇔ m² = 1

⇔ m = -1 hoặc m = 1

Vậy m = -1; m = 1 thì phương trình đã cho có hai nghiệm phân biệt x₁, x₂ thỏa mãn: x₁² + x₂² + 3x₁x₂ = 1

27 tháng 4 2022

Tham khảo:

undefined

 

28 tháng 4 2019

Ta có \(\Delta'=\left(m-2\right)^2+m-2\)

                \(=m^2-4m+4+m-2\)

                 \(=m^2-3m+2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\orbr{\begin{cases}m< 1\\m>2\end{cases}}\)

Teo Vi-et \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+2\end{cases}}\)

Ta có \(x_1+2x_2=2\)

\(\Leftrightarrow\left(x_1+x_2\right)+x_2=2\)

\(\Leftrightarrow2\left(m-2\right)+x_2=2\)

\(\Leftrightarrow2m-4+x_2=2\)

\(\Leftrightarrow x_2=6-2m\)

Ta có \(x_1+x_2=2\left(m-2\right)\)

\(\Leftrightarrow x_1+6-2m=2m-4\)

\(\Leftrightarrow x_1=4m-10\)

Thay vào tích x1 . x2 được

\(x_1x_2=-m+2\)

\(\Leftrightarrow\left(4m-10\right)\left(6-2m\right)=-m+2\)

\(\Leftrightarrow24m-8m^2-60+20m=-m+2\)

\(\Leftrightarrow8m^2-45m+62=0\)

Có \(\Delta=41\)

\(\Rightarrow\orbr{\begin{cases}m=\frac{45-\sqrt{41}}{16}\left(tm\right)\\m=\frac{45+\sqrt{41}}{16}\left(tm\right)\end{cases}}\)

Δ=(2m)^2-4(m^2+2m+3)

=4m^2-4m^2-8m-12=-8m-12

Để PT có 2 nghiệm pb thì -8m-12>0

=>-8m>12

=>m<-3/2

x1^3+x2^3=108

=>(x1+x2)^3-3x1x2(x1+x2)=108

=>(-2m)^3-3(m^2+2m+3)*(-2m)=108

=>-8m^3+6m(m^2+2m+3)=108

=>-8m^3+6m^3+12m^2+18m-108=0

=>-2m^3+12m^2+18m-108=0

=>-2m^2(m-6)+18(m-6)=0

=>(m-6)(-2m^2+18)=0

=>m=-3