\(\frac{m}{x-1}+\frac{5x}{x+1}=5\) ( ẩn x) có nghiệm lớ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)

20 tháng 1 2019

bài tớ sai rồi -_-' chưa lại hộ

\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

14 tháng 3 2017

3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0

3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0

1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0

1/(x-8)-1/(x-2)+6/5=0

ban tu giai tiep nhan

m^2x+2x=5-3mx

m^2x+3mx+2x=5

x(m^2+3m+2)=5

khi 0x=5 thi pt vo nghiem

m^2+3m+2=0

(m+1)(m+2)=0

m=-1 hoac m=-2

14 tháng 3 2017

ai giúp tui zới

2 tháng 2 2018

2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)

Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)

Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)

21 tháng 8 2020

ĐKXĐ : \(x\ne5;2m\)

\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)

\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)

\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)

\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)

\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)