K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

ĐKXĐ : \(x\ne\pm1\)

Pt  \(\frac{m}{x-1}+\frac{4x}{x+1}\) đưa về dạng \(\left(m-4\right)x=-\left(m+4\right)\)

+) Nếu m=4

\(\Rightarrow0x=-8\) (vô nghiệm)

+) Nếu m khác 4 

\(\Rightarrow x=\frac{4+m}{4-m}\)

đk : \(\frac{4+m}{4-m}\ne1\)hay  \(m\ne0\)

\(\frac{4+m}{4-m}\ne-1\) đúng với mọi m

Để \(x\ge-2\)thì \(\frac{4+m}{4-m}\ge2\)

\(\Leftrightarrow\frac{12-m}{4-m}\ne1\)

\(\Leftrightarrow\orbr{\begin{cases}m< 4\\m\ge12\end{cases}}\)

Vậy .....

10 tháng 4 2021

a, Thay m = -1 vào phương trình trên ta được 

\(x^2+4x-5=0\)

Ta có : \(\Delta=16+20=36\)

\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)

Vậy với m = -1 thì x = -5 ; x = 1 

b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được : 

\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)

Vậy với x = 2 thì m = -10/3 

c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)

\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1) 

suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)

Thay vào (1) ta được : \(x_1=-4-5=-9\)

Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)

17 tháng 4 2016

trời đất
ai tl hộ mình vs

16 tháng 5 2021

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

24 tháng 11 2019

\(ĐKXĐ:x\ne1\)

Đề không nói 4 nghiệm có pb hay không coi 4 nghiệm này phân biệt

Đặt \(\frac{x^2}{x-1}=t\Rightarrow x^2-tx+t=0\)

\(\Delta=t^2-4t>0\Rightarrow\orbr{\begin{cases}t>4\\t< 0\end{cases}}\)

Phương trình trở thành :
\(t^2+2t+m=0\Leftrightarrow f\left(t\right)=t^2+2t=-m\left(1\right)\)

PT đã xho có 4 nghiệm \(\Leftrightarrow y=-m\) cắt \(y=f\left(t\right)=t^2+2t\)

tại 2 điểm pb thỏa mãn \(\orbr{\begin{cases}t>4\\t< 0\end{cases}\left(2\right)}\)

\(f\left(0\right)=0;f\left(-1\right)=-1\)

Dựa vào đồ thị \(y=f\left(t\right)\) ta thấy \(y=-m\) cắt \(y=f\left(t\right)\) tại 2 điểm pb thỏa mãn điwwù kiện ( 2 ) thì \(-1< -m< 0\)

\(\Rightarrow0< m< 1\)