Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hai đường thẳng này song song thì
\(\left\{{}\begin{matrix}m-1=3\\2< >-1\left(đúng\right)\end{matrix}\right.\)
=>m-1=3
=>m=4
b: Để hai đường thẳng này cắt nhau thì \(m-1\ne3\)
=>\(m\ne3+1=4\)
c: Để hai đường thẳng này vuông góc thì \(3\left(m-1\right)=-1\)
=>\(m-1=-\dfrac{1}{3}\)
=>\(m=1-\dfrac{1}{3}=\dfrac{2}{3}\)
Để hai đường thẳng song song mà không trùng nhau thì điều kiện cần và đủ là :
\(\hept{\begin{cases}m=1\\3m+2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne-\frac{1}{3}\end{cases}\Leftrightarrow}m=1}\)
a: Để hai đường thẳng y=(a-1)x+5 và y=(3-a)x+2 song song với nhau thì \(\left\{{}\begin{matrix}a-1=3-a\\5\ne2\left(đúng\right)\end{matrix}\right.\)
=>a-1=3-a
=>2a=4
=>a=2
b: Để hai đường thẳng y=kx+(m-2) và y=(5-k)x+4-m trùng nhau thì \(\left\{{}\begin{matrix}k=5-k\\m-2=4-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2k=5\\2m=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{5}{2}\\m=3\end{matrix}\right.\)
a: Để (d)//(d') thì \(\left\{{}\begin{matrix}k-2=2\\-k\ne4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}k=4\\k\ne-4\end{matrix}\right.\)
=>k=4
b: Để (d) vuông góc (d') thì \(2\left(k-2\right)=-1\)
=>2k-4=-1
=>2k=3
=>\(k=\dfrac{3}{2}\)
c: Để (d) cắt (d') thì \(k-2\ne2\)
=>\(k\ne4\)
2 hàm số bậc nhất \(y=mx+3,y=\left(2m+1\right)x-5\left(đk:m\ne0,m\ne-\dfrac{1}{2}\right)\)
a) Để 2 đường thẳng song song với nhau thì:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m=2m+1\\3\ne-5\left(luôn.đúng\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m=-1\end{matrix}\right.\)
b) Để 2 đường thẳng cắt nhau:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\ne2m+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\ne-1\end{matrix}\right.\)
c) Để 2 đường thẳng vuông góc với nhau:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\left(2m+1\right)=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\2m^2+m+1=0\left(VLý.do.2m^2+m+1=2\left(m+\dfrac{1}{4}\right)^2+\dfrac{7}{8}>0\right)\end{matrix}\right.\)
Vậy 2 đường thẳng này không vuông góc với nhau với mọi m
\(a,\Leftrightarrow\left\{{}\begin{matrix}m=2m+1\\-5\ne3\end{matrix}\right.\Leftrightarrow m=-1\\ b,\Leftrightarrow m\ne2m+1\Leftrightarrow m\ne-1\\ c,\Leftrightarrow m\left(2m+1\right)=-1\\ \Leftrightarrow2m^2+m+1=0\\ \Delta=1-8< 0\\ \Leftrightarrow m\in\varnothing\)
Vậy 2 đt không thể vuông góc nhau
a/ Đk: (D) //(D'') là:
\(m=3m-4\)
<=> \(2m=4\)<=> m = 2.
b/ ĐK: ( D) cắt (D'') là:
\(m\ne3m-4\Leftrightarrow m\ne2\)
c) ĐK để (D) vuông (D''0 là:
\(m.\left(3m-4\right)=-1\)
<=> \(3m^2-4m+1=0\)
<=> m =1 hoặc m=1/3