Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2a+3b=2,211\)
Suy ra: \(10a+15b=11,055\left(1\right)\)
Ta lại có: \(5a-7b=1,946\)
Suy ra: \(10a-14b=3,892\left(2\right)\)
Lấy (1) trừ (2) theo từng vế ta được: \(29b=7,163\)
Suy ra: \(b=0,247\)
Suy ra: \(a=0,735\)Mik nhầm là không dùng máy tính.
Đây là hệ phương trình, bạn có thể bấm máy tính như sau: (với máy \(fx-570ES\))
đầu tiên ta ấn \(MODE\), tiếp bấm \(5\left(EQN\right)\), chọn \(1\), tiếp tục bấm 2 rồi ấn =, tiếp bấm tương tự các số theo thứ tự như trên. nhớ mỗi lần bấn số thì ấn =, cuối cùng ra kết quả của x và y tương ứng a và b.
Bổ xung đề a,b,c dương
1/ Chứng minh a < 1
Ta có: \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\)
\(=ab+bc+ca-2\left(a+b+c\right)+3=9-2.6+3=0\)
Nếu \(1\le a< b< c\) thì \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)>0\)(mâu thuẫn)
\(\Rightarrow a< 1\)
Chứng minh b > 1
Giả sử \(a< b\le1\Rightarrow ab< 1\)
Ta có: \(9=ab+c\left(a+b\right)< 1+c\left(a+b\right)\)
\(\Rightarrow c\left(a+b\right)>8\)
Ta có: \(\frac{c}{2}+\left(a+b\right)\ge2\sqrt{\frac{c}{2}.\left(a+b\right)}>2\sqrt{\frac{8}{2}}=4\)
Ta có: \(\hept{\begin{cases}a+b+c=6\\a+b+\frac{c}{2}>4\end{cases}}\)
\(\Rightarrow6-c+\frac{c}{2}>4\)
\(\Rightarrow c< 4\)
\(\Rightarrow a+b>2\)(trái giải thuyết)
\(\Rightarrow b>1\)
Tương tự làm phần còn lại nhé.
tui thấy cách cho THCS r` cho a,b,c la so thuc thoa man : a<b<c ; a+b+c=6 ; ab+bc+ac=9 . chung minh rang : 0<a<1<b<3<c<4? | Yahoo Hỏi & Đáp
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
\(10a^2-b^2+ab=0\)
\(\Rightarrow10a^2+6ab-5ab-3b^2=0\)
\(\Rightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\)
\(\Rightarrow\left(5a+3b\right)\left(2a-b\right)=0\)
Mà \(b>a>0\Rightarrow5a+3b>0\)
Do đó: \(2a-b=0\Rightarrow2a=b\)
Ta có: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
\(=0+\frac{10a-a}{3a+2a}\) (vì b = 2a)
\(=0+\frac{9}{5}=\frac{9}{5}\)
Vậy \(A=\frac{9}{5}\)
Chúc bạn học tốt.
\(B=B_1+B_2+...+B_{2016}\)
\(B_1=\dfrac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x}}{x+1-x}\)
\(B_1=\sqrt{x+1}-\sqrt{x}\)
\(B_2=\sqrt{x+2}-\sqrt{x+1}\)
\(B_3=\sqrt{x+3}-\sqrt{x+2}\)
...
\(B_{2015}=\sqrt{x+2015}-\sqrt{x+2014}\)
\(B_{2016}=\sqrt{x+2016}-\sqrt{x+2015}\)
\(B=\sqrt{x+2016}-\sqrt{x}\)
\(B\left(2017\right)=\sqrt{2017+2016}-\sqrt{2017}\)