K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

Đặt f(x) = 3x3 + x2 + x - a + 1

Theo định lý Bơ-du, số dư khi chia f(x) cho x - 3 bằng f(3)

Ta có: f(3) = 3. 33 + 32 + 3 - a + 1 = 94 - a

Để (3x3 + x2 + x - a + 1) ⋮ (x - 3) thì f(3) = 0

=> 94 - a = 0 => a = 94

Vậy với a = 94 thì (3x3 + x2 + x - a + 1) ⋮ (x - 3)

18 tháng 11 2016

Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.

17 tháng 12 2016

A=12x^3-7x^2-14x+14

PT: (\(-7x^2-14x+14\))+12\(x^3\)

-7(x^2+2x+1)+12x^3+21 do(14=-7+21)

-7\(\left(x+1\right)^2\)+12x^3+21

-7\(\left(x+1\right)^2\)+12(x^3+1)+9

=>x=-1 để A đạt GTNN

 

 

 

 

 

 

 

11 tháng 6 2021

a) C được xác định <=> x khác +- 2

b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)

c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1

Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương

11 tháng 6 2021

mình cảm ơn ạ

23 tháng 7 2019

Cách 1 : Chia \(f(x)\)cho x2 + x + 1

Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)

Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)

Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :

\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)

\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)

Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k +  1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1

8 tháng 6 2021

Bạn tham khảo nha! Mình không hiểu đề câu d lắm nên không làm câu d, nhưng theo mình đoán câu d có phải sẽ là tìm x để phân thức được giá trị nguyên có đúng không nhỉ? 

undefined

8 tháng 6 2021

mình cảm ơnnn ạ

8 tháng 6 2021

a) Với điều kiện x ≠ -2 thì giá trị của phân thức xác định

b) \(\dfrac{2x^2-4x+8}{x^3+8}\)

\(\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\dfrac{2}{x+2}\)

c) Thay x = 2 vào phân thức, ta được : 

\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)

d) Với x ≠ -2 thì giá trị của phân thức được xác định

8 tháng 6 2021

a, ĐKXĐ: x3+8≠0 ⇔ x≠-2

b, \(\dfrac{2x^2-4x+8}{x^3+8}\)=\(\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)=\(\dfrac{2}{x+2}\)

c, vì x=2 thỏa mãn đkxđ nên khi thay vào biểu thức ta có:

\(\dfrac{2}{2+2}\)=\(\dfrac{1}{2}\)

d, \(\dfrac{2}{x+2}\)=2 ⇔ 2x+4=2 ⇔ 2x=-2 ⇔ x=-1 (TMĐKXĐ)

Nên khi phân thức bằng 2 thì x=-1

8 tháng 6 2021

a, ĐKXĐ: x2-4≠0 ⇔ x≠±2

b, \(\dfrac{x^2-4x+4}{x^2-4}\)=\(\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)=\(\dfrac{x-2}{x+2}\)

c, |x|=3

TH1: x≥0 thì x=3 (TMĐK)

TH1: x<0 thì x=-3 (TMĐK)

Thay x=3 và biểu thức ta có:

\(\dfrac{3-2}{3+2}\)=\(\dfrac{1}{5}\)

Thay x=-3 và biểu thức ta có:

\(\dfrac{-3-2}{-3+2}\)=5

8 tháng 6 2021

bạn ơi câu d có giá trị bằng mấy vậy ??

9 tháng 6 2021

`a)ĐK:x^2-4 ne 0<=>x^2 ne 4`
`<=>x ne 2,x ne -2`
`b)A=(x^2-4x+4)/(x^2-4)`
`=(x-2)^2/((x-2)(x+2))`
`=(x-2)/(x+2)`
`c)|x|=3`
`<=>`  \(\left[ \begin{array}{l}x=3\\x=-3\end{array} \right.\) 
`<=>`  \(\left[ \begin{array}{l}A=\dfrac{3-2}{3+2}=\dfrac15\\x=\dfrac{-3-2}{-3+2}=5\end{array} \right.\) 
`d)A=2`
`=>x-2=2(x+2)`
`<=>x-2=2x+4`
`<=>x=-6`

9 tháng 6 2021

a, ĐKXĐ: \(x^2-4\ne0\Leftrightarrow x\ne\pm2\)

b, Ta có: \(\dfrac{x^2-4x+4}{x^2-4}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\) (*)

c, \(\left|x\right|=3\Rightarrow x=\pm3\)

_ Thay x = 3 vào (*), ta được: \(\dfrac{3-2}{3+2}=\dfrac{1}{5}\)

_ Thay x = -3 vào (*), ta được: \(\dfrac{-3-2}{-3+2}=5\)

d, Có: \(\dfrac{x-2}{x+2}=2\)

\(\Leftrightarrow x-2=2\left(x+2\right)\)

\(\Leftrightarrow x-2=2x+4\)

\(\Leftrightarrow x=-6\left(tm\right)\)

Vậy...