Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
c) thay x=1 vào đa thức f(x) ta có: f(1)=4.1^3-1^2+2.1-5
=4-2+2-5
=- 1
vậy 1 k phải là nghiệm của đa thức f(x)
MÌNH CHỈ LÀM ĐƯỢC C THÔI HOK TỐT
làm sai nha chỗ nào là 1 thì thay bằng -1 nha kq sẽ ra nha
a)\(f\left(x\right)=5x^3-9x^2+2x+m=5x^2\left(x+2\right)-19x\left(x+2\right)+40\left(x+2\right)-80+m=\left(x+2\right)\left(5x^2-19x+40\right)+m-80\)
Để \(f\left(x\right)⋮g\left(x\right)\) thì \(m-80=0\Leftrightarrow m=80\)
b) \(f\left(x\right)=\left(x+2\right)\left(5x^2-19x+40\right)+m-80\)
Để f(x) chia g(x) có số dư bằng 3 thì \(m-80=3\Leftrightarrow m=83\)
\(f\left(x\right)=x^5-4x^4-2x^2-7\)
\(g\left(x\right)=-2x^5+6x^4-2x^2+6\)
\(f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
T(x) = f(x) + g(x) = 5x2 - 2x + 3 (1)
H(x) = f(x) - g(X) = x2 - 2x + 5 (2)
Lấy (1) cộng (2) theo vế ta có
f(x) + g(x) + f(x) - g(x) = 5x2 - 2x + 3 + x2 - 2x + 5
=> 2.f(x) = 6x2 - 4x + 8
=> f(x) = 3x2 - 2x + 4
Thay f(x) vào (1) ta có
f(x) + g(x) = 5x2 - 2x + 3
=> (3x2 - 2x + 4) + g(x) = 5x2 - 2x + 3
=> g(x) = 5x2 - 2x + 3 - 3x2 + 2x - 4
=> g(x) = 2x2 - 1
Vậy f(x) = 3x2 - 2x + 4 ; g(x) = 2x2 - 1