K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

Thực hiện phép chia \(f(x)\) cho \(x-1\), ta được:

\(f(x)=(x-1)\cdot Q(x)+r\\\Rightarrow f(1)=(1-1)\cdot Q(1)+r\\\Rightarrow f(1)=r\\\Rightarrow 1^{100}+1^{99}+1^{98}+1^{97}+...+1+1=r\\\Rightarrow r=101(101.chữ.số.1)\)

Vậy số dư của phép chia $f(x)$ cho $(x-1)$ là 101.

23 tháng 8 2023

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

7 tháng 11 2018

Gọi thương của phép chia f(x) cho x là p(x)

        thương của phép chia f(x) cho x-1 là q(x)

       Thương và dư của phép chia f(x) cho x(x-1) là:h(x) và r(x)

\(\Rightarrow\hept{\begin{cases}f\left(x\right)=x.p\left(x\right)+1\left(1\right)\\f\left(x\right)=\left(x-1\right).q\left(x\right)+2\left(2\right)\\f\left(x\right)=x.\left(x-1\right).h\left(x\right)+r\left(x\right)\left(3\right)\end{cases}}\)

Xét biểu thức (3)

Do đa thức chia x.(x-1) có bậc là 2 nên r(x) có bậc <2

=> r(x) có dạng ax+b

=>f(x)=x.(x-1).h(x)+ax+b (4)

Do (4) đúng với mọi x=>(4) đúng với x=0,x=1

Với x=0 thay vào (4) ta được

f(0)=0.(0-1).h(0)+a.0+b

=> f(0)=b (5)

Với x=1 thay vào (4) ta được

f(1)=1.(1-1).h(1)+a.1+b

=>f(1)=a+b (6)

Lại có :từ(1) => f(0)=0.p(0)+1

                    =>f(0)=1 (7)

           Từ (2) => f(1)=(1-1).q(1)+2

                     => f(1)=2(8)

Từ (5),(7)=>b=1

Từ (6),(8)=>a+b=2

Suy ra a+b-b=2-1

=>a=1

=>ax+b=x+1

Vậy dư của đa thức f(x) cho x.(x-1) là x+1

Tk mk nha!!!!

*****Chúc bạn học giỏi*****

29 tháng 3 2021

có f(x)=(x+1)A(x)+5

f(x)=(x2+1)B(x)+x+2

do f(x) chia cho (x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a

=(x2+1)(C(x).x+C(x)+a)+bx+c−a

Vậy bx+c−a=x+2⇒\hept{b=1c−a=2

mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4

vậy số dư trong phép chia f(x) cho x3+x2+x+1là 

7 tháng 10 2018

Vì đa thức chia bậc 2 nên đa thức dư có bậc 1 và có dạng ax + b

Đặt \(f\left(x\right)=\left(x^2-2x-3\right)O\left(x\right)=\left(x+1\right)\left(x-3\right)O\left(x\right)+ax+b\)(3)

      \(f\left(x\right)=\left(x+1\right)Q\left(x\right)-45\) (1)

      \(f\left(x\right)=\left(x-3\right)H\left(x\right)-165\) (2)

Thay lần lượt x = -1 và x = 3 vào (1) và (2), ta có:

\(\hept{\begin{cases}f\left(-1\right)=-45\\f\left(3\right)=-165\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-a+b=-45\\3a+b=-165\end{cases}}\)(dựa vào (3))

\(\Rightarrow\hept{\begin{cases}4a=-120\\-a+b=-45\end{cases}\Rightarrow}\hept{\begin{cases}a=-30\\-\left(-30\right)+b=-45\end{cases}\Rightarrow}\hept{\begin{cases}a=-30\\b=-75\end{cases}}\)

Vậy f(x) chia \(x^2-2x-3\)dư \(ax+b=-30x-75\)

Chúc bạn học tốt.

b: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)

\(=x^2-3x+6+\dfrac{a-6}{x+1}\)

Để f(x):g(x) là phép chia hết thì a-6=0

hay a=6

a: Thay a=3 vào f(x), ta được:

\(f\left(x\right)=x^3-2x^2+3x+3\)

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)

\(=x^2-3x+6-\dfrac{3}{x+1}\)

 

28 tháng 10 2018

help me