K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\)

Ta có:\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)

\(=x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\)

Vì x-1 chia hết cho x-1 nên \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)\)chia hết cho x-1

Do đó \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\) cha x-1 dư 2-99x

Vậy \(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\) dư 2-99x

Không biết có đúng ko nữa

4 tháng 8 2017

a/ Trước tiên ta chứng minh với mọi số tự nhiên \(n\ge1\)

\(x^n-1⋮\left(x-1\right)\)điều này dễ chứng minh nên mình bỏ qua nhé.

Ta có:

\(f\left(x\right)=x^{100}+x^{99}+...+x+1\)

\(=\left(x^{100}-1\right)+\left(x^{99}-1\right)+...+\left(x-1\right)+101\)

Vậy f(x) chia cho g(x) dư 101.

11 tháng 8 2023

Ta thấy 

\(f\left(x\right):g\left(x\right)\)

\(\Rightarrow\left(x^{100}+x^{99}+x^{98}+x^5+2020\right):\left(x^2-1\right)\)

\(=\left(x^{98}+x^{97}+2x^{96}+2x^{95}+...2x^4+3x^3+2x^2+3x+2\right)\) có số dư là \(R\left(x\right)=3x+2022\)

\(\Rightarrow R\left(2021\right)=3.2021+2022=8085\)

4 tháng 12 2018

x \(\varepsilon\) { 1 ; -4 }

4 tháng 12 2018

\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)

Để dư bằng 0 thì \(x^2-5x+4=0\)

\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

11 tháng 10 2020

a,Gọi Đa thức dư là ax+b,thương là Q(x)

Ta có:f(x)=1+x+x19+x199+x2019

              =(1-x2)Q(x)+Q(x)+b

=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b  (1)

Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:

1+1+119+1199+12019=a+b

<=>a+b=5(*)

Với x=1 ta có:

1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b

<=>-a+b=-3(**)

Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1

Thay b=1 vào (*) ta đc:a=4

Vậy đa thức dư là 4x+1

b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019

=(x+1)(x+7)(x+5)(x+3)+2019

=(x2+8x+7)(x2+8x+15)+2019 

=(x2+8x+12-5)(x2+8x+12+3)+2019

=(x2+8x+12)2-2(x2+8x+12)-15+2019

=(x2+8x+12)2-2(x2+8x+12)+2004

31 tháng 8 2020

Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)

Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại 

Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 . 

Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có 

\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)

\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)

Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)

Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)

Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\)\(b=0\)

Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)

Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm