Tìm ĐKXĐ của các biểu thức sau:
a) C = 5 x + 1 3 x − 2 − x 4 ; b) D = 3 3 x 2 + 1 + 1 4 : 5 x 3 − x .
a)
C...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. Tìm ĐKXĐ của các biểu thức sau: a)
C
=
5
x
+
1
3
x
−
2
−
x
4
;
b)
D
=
3
3
x
2
+
1
+
1
4
:
5
x
3
−
x
.
\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)\(\left(đkcđ:x\ne\pm3;x\ne-\frac{1}{2}\right)\) \(=\left(\frac{\left(x-1\right).\left(x-3\right)+2.\left(x+3\right)-\left(x^2+3\right)}{x^2-9}\right):\left(\frac{2x-1-\left(2x+1\right)}{2x+1}\right)\) \(=\frac{x^2-4x+3+2x+6-x^2-3}{x^2-9}:\frac{-2}{2x+1}\) \(=\frac{-2x-6}{x^2-9}.\frac{2x+1}{-2}\) \(=\frac{-2\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}.\frac{2x+1}{-2}\) \(=\frac{2x+1}{x-3}\) b)\(\left|x+1\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}\\x+1=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(koTMđkxđ\right)\\x=-\frac{3}{2}\left(TMđkxđ\right)\end{cases}}}\) thay \(x=-\frac{3}{2}\) vào P tâ đc: \(P=\frac{2x+1}{x-3}=\frac{2.\left(-\frac{3}{2}\right)+1}{-\frac{3}{2}-3}=\frac{4}{9}\) c)ta có:\(P=\frac{x}{2}\Leftrightarrow\frac{2x+1}{x-3}=\frac{x}{2}\) \(\Rightarrow2.\left(2x+1\right)=x.\left(x-3\right)\) \(\Leftrightarrow4x+2=x^2-3x\) \(\Leftrightarrow x^2-7x-2=0\) \(\Leftrightarrow x^2-2.\frac{7}{2}+\frac{49}{4}-\frac{57}{4}=0\) \(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{57}{4}=0\) \(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{57}}{2}\right).\left(x-\frac{7}{2}+\frac{\sqrt{57}}{2}\right)\) bạn tự giải nốt nhé!! d)\(x\in Z;P\in Z\Leftrightarrow\frac{2x+1}{x-3}\in Z\Leftrightarrow\frac{2x-6+7}{x-3}=2+\frac{7}{x-3}\in Z\) \(2\in Z\Rightarrow\frac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) bạn tự làm nốt nhé a, \(\left(\dfrac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{2x-1-2x-1}{2x+1}\right)\) \(=\dfrac{-2x+6}{\left(x+3\right)\left(x-3\right)}:\dfrac{-2}{2x+1}=\dfrac{-2\left(x-3\right)\left(2x+1\right)}{-2\left(x+3\right)\left(x-3\right)}=\dfrac{2x+1}{x+3}\) b, \(\left|x+1\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}-1\\x=-\dfrac{1}{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktmđk\right)\\x=-\dfrac{3}{2}\end{matrix}\right.\) Thay x = -3/2 ta được \(\dfrac{2\left(-\dfrac{3}{2}\right)+1}{-\dfrac{3}{2}+3}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\) a) \(ĐKXĐ:x\ne-3;x\ne2\) b) \(P=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\) \(P=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\) \(P=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\) \(P=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\) vậy \(P=\frac{x-4}{x-2}\) \(P=\frac{-3}{4}\) \(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\) \(\Leftrightarrow4\left(x-4\right)=-3.\left(x-2\right)\) \(\Leftrightarrow4x-16=-3x+6\) \(\Leftrightarrow7x=22\) \(\Leftrightarrow x=\frac{22}{7}\) c) \(P\in Z\Leftrightarrow\frac{x-4}{x-2}\in Z\) \(\frac{x-2-6}{x-2}=1-\frac{6}{x-2}\in Z\) mà \(1\in Z\Rightarrow\left(x-2\right)\inƯ\left(6\right)\in\left(\pm1;\pm2;\pm3;\pm6\right)\) mà theo ĐKXĐ: \(\Rightarrow\in\left(\pm1;-2;3;\pm6\right)\) thay mấy cái kia vào rồi tìm \(x\) d) \(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\) khi \(x=3\Rightarrow P=\frac{3-4}{3-2}=-1\) khi \(x=-3\Rightarrow P=\frac{-3-4}{-3-2}=\frac{-7}{-5}=\frac{7}{5}\) Bạn phân tích các đa thức \(\left(x+\dfrac{1}{x}\right)^n\) (n là số mũ của \(x\) và \(\dfrac{1}{x}\)), sau đó trừ cho đa thức gốc để ra nhé. a, Ta có: \(A=x^2+\dfrac{1}{x^2}\\ =\left(x+\dfrac{1}{x}\right)^2-2\cdot x\cdot\dfrac{1}{x}\\ =3^2-2=7\) Vậy \(A=7\) Tương tự, ta có: b, \(B=x^3+\dfrac{1}{x^3}=\left(x+\dfrac{1}{x}\right)^3-3x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)\\=3^3-3\cdot3=18
\) c, \(C=x^4+\dfrac{1}{x^4}=\left(x+\dfrac{1}{x}\right)^4-4x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)^2\\
=3^4-4\cdot3^2=55\) d, \(D=x^5+\dfrac{1}{x^5}=\left(x+\dfrac{1}{x}\right)^5-5x\cdot\dfrac{1}{x}\left(x^3+x+\dfrac{1}{x}+\dfrac{1}{x^3}\right)\\
=3^5-5\left(18+3\right)\\
=138\) (bạn nhớ áp dụng phần b để làm nhé.) Chúc bạn học tốt nha Bài 1 : Với : \(x>0;x\ne1\) \(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\) Thay vào ta được : \(P=x=25\) Bài 2 : a, Với \(x\ge0;x\ne1\) \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\) \(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\) Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)