Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm
Từ đó suy ra căn thức vô nghiệm
Vậy không có giá trị nào của x để biểu thức trên xác định
b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)
Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)
\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)
c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)
Rồi làm như câu b
d) \(\sqrt{\dfrac{2-x}{x+3}}\)
Để biểu thức trên xác định thì
\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)
e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi )
\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)
Để biểu thức trên xác định thì \(x\ge0\) và \(x-3\ge0\Leftrightarrow x\ge3\)
Bữa sau mình làm tiếp
a) ĐKXĐ: \(2-x^2\ge0\Leftrightarrow\left|x\right|< \sqrt{2}\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)
b) ĐKXĐ: \(5x^2-3>0\Leftrightarrow\left|x\right|>\sqrt{\dfrac{3}{5}}\Leftrightarrow x>\sqrt{\dfrac{3}{5}}\) hoặc \(x< -\sqrt{\dfrac{3}{5}}\)
c) ĐKXĐ: \(-\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
d) ĐKXĐ: \(\left(x-1\right)\left(x+2\right)>0\Leftrightarrow x>1\) hoặc \(x< -2\)
Bài 2:
a: ĐKXĐ: 2/3x-1/5>=0
=>2/3x>=1/5
hay x>=3/10
b: ĐKXĐ: \(\dfrac{x+1}{2x-3}>=0\)
=>2x-3>0 hoặc x+1<=0
=>x>3/2 hoặc x<=-1
c: ĐKXĐ: \(\left\{{}\begin{matrix}3x-5>=0\\x-4>0\end{matrix}\right.\Leftrightarrow x>4\)
a: ĐKXĐ: x>=0
b: ĐKXĐ: x-1>0 và -(x2-x-6)>=0
=>x>1 và (x-3)(x+2)<=0
=>x>1 và -2<=x<=3
=>1<x<=3
ĐKXĐ của A : \(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}}\Leftrightarrow x\ge0\)
ĐKXĐ của B : \(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}}\Leftrightarrow x\ge1\)
a) Ta thấy theo điều kiện \(x\ge0\Rightarrow x+1\ge1\Rightarrow\sqrt{x+1}\ge1\Rightarrow A=\sqrt{x}+\sqrt{x+1}\ge1\)
Ta thấy theo điều kiện \(x\ge1\Rightarrow x+4\ge5\Rightarrow\sqrt{x-1}\ge0;\sqrt{x+4}\ge5\)
\(\Rightarrow B=\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)
b) Ta thấy A = 1 khi \(\hept{\begin{cases}\sqrt{x}=0\\\sqrt{x+1}=1\end{cases}}\Rightarrow x=0\)
Do \(B\ge\sqrt{5}\) mà \(\sqrt{5}>2\) nên phương trình B = 2 vô nghiệm.
Hoàng Thị Thu Huyền sao bài của cô ngắn v? Bài em dài lắm ạ.
Giải:
\(A=\sqrt{x}+\sqrt{x+1}\) xác định khi và chỉ khi:
\(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}}\Leftrightarrow x\ge0}\)
\(B=\sqrt{x+4}+\sqrt{x-1}\) xác định khi và chỉ khi:
\(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x\ge1\end{cases}}\Leftrightarrow\sqrt{x+1}\ge}1\)
a, Với \(x\ge0\)ta có: \(x+1\ge1\Rightarrow\sqrt{x+1}\ge1\)
Suy ra: \(A=\sqrt{x}+\sqrt{x+1}\ge1\)
Với \(x\ge1\)ta có:
\(x+4\ge1+4\Leftrightarrow x+4\ge5\Leftrightarrow\sqrt{x+4}\ge\sqrt{5}\)
Suy ra: \(B=\sqrt{x+4}+\sqrt{x-1}\ge5\)
b, *\(\sqrt{x}+\sqrt{x+1}=1\)
Điều kiện: \(x\ge0\)
Ta có: \(\sqrt{x}+\sqrt{x+1}\ge1\)
Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x}=0\)và \(\sqrt{x+1}=1\)
Suy ra: \(x=0\)
*\(\sqrt{x+4}+\sqrt{x-1}=2\)
Ta có: \(\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)
Mà: \(\sqrt{5}>\sqrt{4}\Leftrightarrow\sqrt{5}>2\)
Vậy: Không có giá trị nào của x để \(\sqrt{x+4}+\sqrt{x-1}=2\)
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
a/ ĐKXĐ: \(\sqrt{3-2x}>0\Leftrightarrow3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \dfrac{3}{2}\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\2-\sqrt{x}\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\\sqrt{x}\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
c/đkxđ: \(\sqrt{-x}\ge0\Leftrightarrow x\le0\)
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
a: ĐKXĐ: \(\dfrac{x-1}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-1}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow1\le x< 5\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)