Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:\(\sqrt{x+2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|\)
Suy ra : ĐK là x -1>0 suy ra x>1
Trường hợp mẫu số của phân thức 2 cũng tương tự tìm được ĐK x>1
Ta có \(M=\frac{1}{\sqrt{x-1}+1}-\frac{1}{\sqrt{x-1}-1}\)
\(M=\frac{\sqrt{x-1}-1-\sqrt{x-1}-1}{\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}\)
\(M=\frac{-2}{x-1-1}=\frac{-2}{x-2}\)
Tới đây rồi thì tìm giá trị nguyên thì giống với lớp 6,7 đó tự tìm thì chắc ai cũng tìm được
a) A= \(\sqrt{x-1}+\sqrt{3-x}\)
ĐK: \(\hept{\begin{cases}x-1\text{ ≥ }0\\3-x\text{ ≥ }0\end{cases}}\)=> \(\hept{\begin{cases}x\text{ ≥ }1\\x\text{≤}3\end{cases}}\)
Vậy 1≤x≤3
b) \(\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}\)
\(=\frac{3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\frac{3+\sqrt{5}}{4}-\frac{\sqrt{5}-1}{4}\)
\(=\frac{3+1}{4}=1\)
a, 1 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3
b, quy đồng mẫu ta được kết quả bằng 1
TL:
ĐKXĐ:\(\sqrt{x^2-1}>0\)
\(\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow x>1\)
Vậy...
DKXD : X > 1