K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: 5-4x>=0

=>x<=5/4

b: ĐKXĐ: x thuộc R

c: ĐKXĐ: x-2<0

=>x<2

19 tháng 6 2023

\(a,ĐK:5-4x\ge0\\ \Rightarrow x\le\dfrac{5}{4}\\ b,ĐK:\left(x+1\right)^2\ge0\left(lđ\right)\)

\(\Rightarrow\) Với mọt giá trị của x

\(c,ĐK:\dfrac{-1}{x-2}\ge0\)

Vì \(-1< 0\)

\(\Rightarrow x-2< 0\)

\(\Rightarrow x< 2\)

 

19 tháng 6 2017

ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)

\(\Leftrightarrow2\left|x\right|\ge1\)

\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)

\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)

5 tháng 8 2016

a)

\(\sqrt{2x+10}+\frac{1}{x^2+4}\)

Căn thức có nghĩa khi 

\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)

Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)

b)

\(\sqrt{\frac{x^2+1}{x-1}}\)

Căn thưc có nghĩa khi

\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)

Mà \(x^2+1\ge1\) => x - 1 >0

\(x+1>0\)

\(\Leftrightarrow x>-1\)

4 tháng 7 2021

Để căn thức \(\sqrt{x^2-8x-9}\) có nghĩa 

<=> x2 - 8x - 9 \(\ge0\)

<=> (x - 4)2 \(\ge25\)

<=> |x - 4| \(\ge5\)

<=> \(\orbr{\begin{cases}x-4\ge5\\x-4\le-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)

21 tháng 10 2021

a) ĐKXĐ: \(x+5\ge0\Leftrightarrow x\ge-5\)

b) ĐKXĐ: \(7-x\ge0\Leftrightarrow x\le7\)

c) ĐKXĐ: \(x+3>0\Leftrightarrow x>-3\)

d) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)

27 tháng 10 2021

Trả lời:

\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)

\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2

Vậy với mọi x khác 2 thì căn thức có nghĩa 

1 tháng 8 2020

\(\frac{\sqrt{-3x}}{x^2-1}\)

Điều kiện để căn thức có nghĩa là :

\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)

22 tháng 8 2018

\(\sqrt{4x-x^2-2}\)

ĐKXĐ : \(4x-x^2-2\ge0\)

\(\Leftrightarrow x^2-4x+2\le0\)

Ta có : \(x^2-4x+2=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot2=8>0\)

=> Phương trình có hai nghiệm

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)

Để \(x^2-4x+2\le0\)

\(\Rightarrow\orbr{\begin{cases}x\ge2+\sqrt{2}\\x\le2-\sqrt{2}\end{cases}}\)

Vậy ....

5 tháng 7 2021

ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)

Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}x+3>0\\1-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 1\end{matrix}\right.\Leftrightarrow-3< x< 1\)