Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để hs trên là hàm bậc nhất thì:
$4m2-4m+1\neq 0$
$\Leftrightarrow (2m-1)^2\neq 0$
$\Leftrightarrow 2m-1\neq 0$
$\Leftrightarrow m\neq \frac{1}{2}$
b.
$f(1)=(4m^2-4m+1).1-3=4m^2-4m-2=6$
$\Leftrightarrow 4m^2-4m-8=0$
$\Leftrightarrow m^2-m-2=0$
$\Leftrightarrow (m+1)(m-2)=0$
$\Leftrightarrow m=-1$ hoặc $m=2$
a: Để hàm số y=(2m-10)x-7 là hàm số bậc nhất thì \(2m-10\ne0\)
=>\(2m\ne10\)
=>\(m\ne5\)
b: Vì \(3m^2+1>=1>0\forall m\)
nên hàm số \(y=\left(3m^2+1\right)x+23\) là hàm số bậc nhất với mọi m
Câu 5:
a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)
\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)
\(f\left(0\right)=7\cdot0-3=-3\)
b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:
\(2\left(2m+1\right)-3=3\)
=>2(2m+1)=6
=>2m+1=3
=>2m=2
=>m=1
c: Thay m=1 vào hàm số, ta được:
\(y=\left(2\cdot1+1\right)x-3=3x-3\)
*Vẽ đồ thị
d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)
=>\(2m\ne-1\)
=>\(m\ne-\dfrac{1}{2}\)
e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)
=>2m+1=5
=>2m=4
=>m=2
Để phương trình (2m + 4)x - 2 = 0 là phương trình bậc nhất thì 2m + 4 \(\ne0\)
\(\Leftrightarrow2m\ne-4\)
\(\Leftrightarrow m\ne-2\)
Vậy \(m\ne-2\) thì phương trình đã cho là phương trình bậc nhất
để pt này là pt bậc nhất một ẩn thì : (2m+4)\(\ne\)0
<=>m\(\ne-2\)
vậy với đk m\(\ne\)-2 thì pt (2m+4)x-2=0 là pt bậc nhất.
a: Để hàm số y=(m-2)x+m+3 nghịch biến trên R thì m-2<0
=>m<2
b: Thay x=3 và y=0 vào y=(m-2)x+m+3, ta được:
\(3\left(m-2\right)+m+3=0\)
=>3m-6+m+3=0
=>4m-3=0
=>4m=3
=>\(m=\dfrac{3}{4}\)
c: Tọa độ giao điểm của hai đường thẳng y=-x+2 và y=2x-1 là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=3\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1+1=0\end{matrix}\right.\)
Thay x=1 và y=0 vào y=(m-2)x+m+3, ta được:
\(1\left(m-2\right)+m+3=0\)
=>m-2+m+3=0
=>2m+1=0
=>2m=-1
=>\(m=-\dfrac{1}{2}\)
Sửa đề: \(y=mx^2+x\left(m-1\right)+2\)
Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m=0\\m-1\ne0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=0\\m\ne1\end{matrix}\right.\)
=>m=0
Câu 1: B
Câu 2: D
Bài 1: Các hàm số bậc nhất là
a: y=3x-2
a=3; b=-2
d: y=-2(x+5)
=-2x-10
a=-2; b=-10
e: \(y=1+\dfrac{x}{2}\)
\(a=\dfrac{1}{2};b=1\)
bạn ơi câu e minh viết là 1+x phần 2 bạn xem lai nha
câud mình viết thiếu là y = -2. (x+5) -4
Để phương trình (2m-1)x+3-m=0 (1) là phương trình bậc nhất một ẩn thì :
\(\Rightarrow a\ne0\)
\(\Leftrightarrow2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
\(\Leftrightarrow m\ne\frac{1}{2}\)
Vậy \(m\ne\frac{1}{2}\)thì phương trình (1) là phương trình bậc nhất một ẩn
\(\Leftrightarrow m\ne\frac{1}{2}\)\(\Leftrightarrow m\ne\frac{1}{2}\)
Điều kiện của $m$ để hàm số $y=(-2m+4)x+5$ là hàm số bậc nhất là $$m \neq 2$$.