Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A
Bước 1 sai vì giả sử phản chứng sai, phải giả sử phương trình vô nghiệm và a, c trái dấu.
Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}b^2-4ac< 0\\a>0\end{matrix}\right.\)
- TH1: Nếu a ≠ 0 thì phương trình có nghiệm duy nhất ⇔ ∆ = 0 .
- TH2: Nếu a = 0 thì phương trình trở thành b x + c = 0 có nghiệm duy nhất ⇔ b ≠ 0
Đáp án cần chọn là: B
Phương trình có hai nghiệm phân biệt khi Δ > 0.
Khi đó, gọi hai nghiệm của phương trình là x 1 và x 2 .
Do x 1 và x 2 là hai nghiệm dương nên x 1 + x 2 > 0 x 1 x 2 > 0 hay S > 0 P > 0
Đáp án cần chọn là: B
Phương trình a x 2 + b x + c = 0 a > 0 có nghiệm duy nhất nếu
∆ = b 2 - 4 a c = 0 ⇔ b 2 = a c
Đáp án cần chọn là: B
Phương trình có hai nghiệm âm phân biệt khi và chỉ khi Δ > 0 S < 0 P > 0
Đáp án cần chọn là: C
x1+x2=-b/a; x1x2=c/a
=>2x1+2x2=-2b/a; 4x1x2=4c/a
=>PT cần tìm là x^2+2b/a*x+4c/a=0
Đặt \(t=ax^2+bx+c\).(*)
ta có: \(at^2+bt+c=x\Leftrightarrow at^2+bt+c-x=0\)
\(\Delta=b^2-4a\left(c-x\right)=b^2-4ac+4ax\)
Để phương trình (*) vô nghiệm thì \(\Delta< 0\Leftrightarrow b^2-4ac+4ax< 0\Leftrightarrow x< -\dfrac{b^2-4ac}{4a}\)(1)
Đỉnh của hàm số (*) là: \(I\left(\dfrac{-b}{2a};-\dfrac{b^2-4ac}{4a}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-\dfrac{b^2-4ac}{4a}khia>0\\x\le-\dfrac{b^2-4ac}{4a}khia< 0\end{matrix}\right.\)(2)
Từ (1) và (2), ta suy ra \(x< -\dfrac{b^2-4ac}{4a}\)khi a<0
Vậy phương trình (*) vô nghiệm khi a<0
Mình làm ko biết đúng ko, mong mọi người góp ý