Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi I là trung điểm AB khi đó \(I\left(-1;2\right)\) và \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\) với mọi M
Do đó \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất khi và chỉ khi M là hình chiếu của I trên \(\Delta\)
Gọi \(\left(x;y\right)\) là tọa độ hình chiếu của I trên \(\Delta\). Khi đó ta có hệ phương trình :
\(\begin{cases}x+y+1=0\\\frac{x+1}{1}=\frac{y-2}{1}\end{cases}\) \(\Leftrightarrow\begin{cases}x+y+1=0\\x-y+3=0\end{cases}\)
Giải hệ thu được \(x=-2;y=1\) Vạy điểm \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất là \(M\equiv I\left(-2;1\right)\)
b) gọi J là điểm thỏa mãn \(2\overrightarrow{JA}+3\overrightarrow{JB}\)=0 khi đó \(J\left(-\frac{8}{5};\frac{9}{5}\right)\) và với mọi điểm M của mặt phẳng đều có
\(2MA^2+3MB^2=2JA^2+3JB^2+5MJ^2\)
suy ra \(M\in\Delta\)mà \(2MA^2+3MB^2\)nhỏ nhất khi và chỉ khi M là hình chiếu của J trên\(\Delta\)
Gọi (x;y) là tọa độ hình chiếu của J trên \(\Delta\).khi đó ta có phương trình
\(\begin{cases}x+y+1=0\\x+\frac{8}{5}=y-\frac{9}{5}\end{cases}\)\(\Leftrightarrow\begin{cases}x+y+1=0\\x-y-\frac{17}{5}=0\end{cases}\)
Giải hệ thu được : \(x=\frac{5}{6};y=-\frac{11}{5}\)
Vậy điểm M cần tìm là : \(M\left(\frac{6}{5};\frac{-11}{5}\right)\)
Gọi B là điểm đối xứng A qua d, C là giao điểm của OB và d
\(\Rightarrow AM=BM\)
\(OA+OM+AM=OA+OM+BM\ge OA+OB\)
Dấu "=" xảy ra khi và chỉ khi O, M, B thẳng hàng hay M trùng C
Phương trình đường thẳng d' qua A và vuông góc d có dạng:
\(1\left(x-2\right)+1\left(y-0\right)=0\Leftrightarrow x+y-2=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow D\left(0;2\right)\)
D là trung điểm AB \(\Rightarrow B\left(-2;4\right)\)
Phương trình OB: \(2x+y=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x+y=0\\x-y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)
Đề kiểu gì mà cho điểm A nằm ngay trên đường thẳng d như vậy nhỉ?
Theo BĐT tam giác ta có:
\(MA+MB\ge AB\)
Dấu "=" xảy ra khi M, A, B thẳng hàng, hay M là giao điểm của AB và d
Nhưng do A nằm trên d nên giao điểm của AB và d chính là A
Vậy M trùng A, hay M có tọa độ \(M\left(3;4\right)\)
//Ko cần tính toán bất kì 1 bước nào hết, chỉ cần lý luận là có kết quả. Chắc người ra đề ko để ý đến chuyện điểm A bất ngờ nằm trên d.
Lời giải:
Vì \(M\in (d): x+y+1=0\) nên gọi tọa độ của \(M(a,-a-1)\)
Khi đó:
\(\overrightarrow{MA}=(1-a, 2+a+1)=(1-a,a+3)\)
\(\overrightarrow{MB}=(-2-a, a+1)\)
\(\overrightarrow{MC}=(2-a, -1+a+1)=(2-a, a)\)
\(\Rightarrow 2\overrightarrow{MA}-3\overrightarrow{MB}+2\overrightarrow{MC}=2(1-a,a+3)-3(-2-a,a+1)+2(2-a,a)\)
\(=(12-a, a+3)\)
\(\Rightarrow |2\overrightarrow{MA}-3\overrightarrow{MB}+2\overrightarrow{MC}|=\sqrt{(12-a)^2+(a+3)^2}\)
\(=\sqrt{2a^2-18a+153}=\sqrt{2(a-\frac{9}{2})^2+\frac{225}{2}}\)
Từ đây suy ra để \(|2\overrightarrow{MA}-3\overrightarrow{MB}+2\overrightarrow{MC}|\) min, \(a=\frac{9}{2}\)
\(\Rightarrow M=(\frac{9}{2}, \frac{-11}{2})\)