Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x=-1 và y=4 vào (d), ta được:
\(3m\cdot\left(-1\right)+m-2=4\)
\(\Leftrightarrow-2m=6\)
hay m=-3
b) Để (d)//(Δ) thì \(\left\{{}\begin{matrix}3m=6\\m-2\ne-1\end{matrix}\right.\Leftrightarrow m=2\)
Khi m = 2 : y = x + 5
TXĐ : D = R.
Tính biến thiên :
- a = 1 > 0 hàm số đồng biến trên R.
bảng biến thiên :
x | -∞ | +∞ | |
y | -∞ | +∞ |
Bảng giá trị :
x | 0 | -5 |
y | 5 | 0 |
Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).
b/(dm) đi qua điểm A(4, -1) :
4 = (m -1)(-1) +2m +1
<=> m = 2
3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1
4.(dm) đi qua điểm cố định M(x0, y0) :
Ta được : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.
<=> (x0 + 2) m = y0 – 1 + x0(*)
(*) luôn đúng mọi m khi :
x0 + 2= 0 và y0 – 1 + x0 = 0
<=> x0 =- 2 và y0 = 3
Vậy : điểm cố định M(-2, 3)
A(15; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 15.a + b ⇒ b = –3 – 15.a (1)
B (21; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 21.a + b ⇒ b = –3 – 21.a (2)
Từ (1) và (2) suy ra –3 – 15.a = –3 – 21.a ⇒ a = 0 ⇒ b = –3.
Vậy a = 0; b = –3.
3.
Gọi:
Tập hợp HS giỏi toán là $A$
Tập hợp HS giỏi lý là $B$
Tập hợp HS giỏi anh là $C$
Theo bài ra thì:
$|A|=15; |B|=14; |C|=12$
$|A\cap B|=8; |B\cap C|=5; |C\cap A|=7$
Số học sinh giỏi cả 3 môn là:
$|A\cap B\cap C|=\frac{8+5+7-11}{3}=3$
Số học sinh giỏi ít nhất 1 môn:
$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|B\cap C|-|C\cap A|+|A\cap B\cap C|=15+14+12-7-8-5+3=24$
Số học sinh lớp 10A là:
$24+15=39$
Đáp án A.
Đáp án A