K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2021

a) M - \(^{\left(x^2y-1\right)}\)= -2\(x^3\)+\(x^2y\)+1

=> M= (-2\(x^3\)+\(x^2y\)+1) + \(^{\left(x^2y-1\right)}\)

=> M= -2\(x^3\)+\(x^2y\)+1+ \(^{x^2y-1}\)

=> M= -2\(x^3\)+(\(x^2y+x^2y\))+1-1

=> M=  -2\(x^3\)+\(2x^2y\)

b) \(3x^2+3xy-3x^3-M=3x^2+2xy-4y^2\)

=> \(M=\left(3x^2+3xy-3x^3\right)-\left(3x^2+2xy-4y^2\right)\)

\(=>M=3x^2+3xy-3x^3-3x^2-2xy+4y^2\)

\(=>M=\left(3x^2-3x^2\right)+\left(3xy-2xy\right)-3x^3+4y^2\)

\(=>M=xy-3x^3+4y^2\)

 

Hơi muộn nhưng mong bạn tick cho mình hihi

1 tháng 5 2021

cảm ơn bạn

5 tháng 6 2019

Ta có A + 2B = (x2y - xy2 + 3x2) + 2(x2y + xy2 - 2x2 - 1)

= x2y - xy2 + 3x2 + 2x2y + 2xy2 - 4x2 - 2

= 3x2y + xy2 - x2 - 2. Chọn C

25 tháng 4 2022

\(A=5x^2y-xy^2+4xy+6\)             bậc : 3

a)\(B=-5x^2y+xy^2-4xy-6\)

b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)

\(C=-5x^2y+xy^2-6xy-5\)

25 tháng 4 2022

cảm ơn bn

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

Chọn B

1: 

a: M=4/9x^2y^2*4x^2y^2=16/9x^4y^4

b: bậc là 8

hệ số là 16/9

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

13 tháng 4 2018

Chọn D

Ta có: C = 2A + 3B = 2(x2 - x2y + 5y2+ 5) + 3(3x2+ 3xy2 - 2y2 - 8)

= (2x2 - 2x2y + 10y2+ 10) + (9x2+ 9xy2- 6y2 - 24)

= 11x2 - 2x2y + 9xy2+ 4y2- 14

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)