Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A + 2B = (x2y - xy2 + 3x2) + 2(x2y + xy2 - 2x2 - 1)
= x2y - xy2 + 3x2 + 2x2y + 2xy2 - 4x2 - 2
= 3x2y + xy2 - x2 - 2. Chọn C
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
1:
a: M=4/9x^2y^2*4x^2y^2=16/9x^4y^4
b: bậc là 8
hệ số là 16/9
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
Chọn D
Ta có: C = 2A + 3B = 2(x2 - x2y + 5y2+ 5) + 3(3x2+ 3xy2 - 2y2 - 8)
= (2x2 - 2x2y + 10y2+ 10) + (9x2+ 9xy2- 6y2 - 24)
= 11x2 - 2x2y + 9xy2+ 4y2- 14
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
a) M - \(^{\left(x^2y-1\right)}\)= -2\(x^3\)+\(x^2y\)+1
=> M= (-2\(x^3\)+\(x^2y\)+1) + \(^{\left(x^2y-1\right)}\)
=> M= -2\(x^3\)+\(x^2y\)+1+ \(^{x^2y-1}\)
=> M= -2\(x^3\)+(\(x^2y+x^2y\))+1-1
=> M= -2\(x^3\)+\(2x^2y\)
b) \(3x^2+3xy-3x^3-M=3x^2+2xy-4y^2\)
=> \(M=\left(3x^2+3xy-3x^3\right)-\left(3x^2+2xy-4y^2\right)\)
\(=>M=3x^2+3xy-3x^3-3x^2-2xy+4y^2\)
\(=>M=\left(3x^2-3x^2\right)+\left(3xy-2xy\right)-3x^3+4y^2\)
\(=>M=xy-3x^3+4y^2\)
Hơi muộn nhưng mong bạn tick cho mình
cảm ơn bạn