K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

\(M=6x^2+9xy-y^2-5x^2+2xy\)

\(M=x^2+11xy-y^2\)

\(N=3xy-4y^2-x^2+7xy-8y^2\)

\(N=-x^2+10xy-12y^2\)

15 tháng 3 2017

a.    \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)

\(\Rightarrow M=6x^2+9xy-y^2-5x^2+2xy\)

b.     \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)

\(\Rightarrow N=3xy-4y^2-x^2+7xy-8y^2\)

14 tháng 3 2022

a, \(A=-x^2+4xy^2-2xz+3y^2\)

b, \(B=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)

c, \(A=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)

a: \(M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)

b: \(N=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)

23 tháng 3 2017

\(a.M+(5x^2-2xy)=6x^2+9xy-y^2 \)
\(M=(6x^2+9xy-y^2)-(5x^2-2xy)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=(6x^2-5x^2)+(9xy+2xy)-y^2\)
\(M=x^2+11xy-y^2\)
Vậy \(M=x^2+11xy-y^2\)
\(b.M+(3x^2y-2xy^3)=2x^2y-4xy^3\)
\(M=(2x^2y-4xy^3)-(3x^2-2xy^3)\)
\(M= \) \(2x^2-4xy^3-3x^2+2xy^3\)
\(M=(2x^2-3x^2)+(-4xy^3+2xy^3)\)
\(M=-x^2-2xy^3\)
Vậy \(M=-x^2-2xy^3\)



24 tháng 3 2017

a) M + (5x\(^2\) - 2xy) = 6x\(^2\) + 9xy - y\(^2\)

=> M = (6x\(^2\) + 9xy - y\(^2\)) - (5x\(^2\) - 2xy)

M = 6x\(^2\) + 9xy - y\(^2\) - 5x\(^2\) + 2xy

M = (6x\(^2\) - 5x\(^2\)) + (9xy + 2xy) - y\(^2\)

M = 1x\(^2\) + 11xy - y\(^2\)

17 tháng 6 2015

a)(25u2v-13uv2+u3)-M=11u2v-2u3

=>M=25u2v-13uv2+u3-11u2v-2u3

=(25u2v-11u2v)-(2u3-u3)-13uv2

=14u2v-u3-13uv2

=u(14uv-u2-13v2)

 

9 tháng 4 2021

Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\left(\forall x\right)\\\left(3y+4\right)^{2020}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\left(\forall x,y\right)\)

Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\left(\forall x,y\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Khi đó thay vào ta được: 

\(M+5\cdot\left(\frac{5}{2}\right)^2-2\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)=6\cdot\left(\frac{5}{2}\right)^2+9\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(\Leftrightarrow M+\frac{455}{12}=\frac{103}{18}\)

\(\Rightarrow M=-\frac{1159}{36}\)

23 tháng 5 2020

Bài 1:

\(A+B=7x^2-3xy+2y^2\)

\(A-B=x^2-7xy+4y^2\)

Bài 2:

a) \(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)

\(M=x^2+11xy-y^2\)

b) \(N=\left(3xy-4y^2\right)-\left(x^2-7xy+8y^2\right)\)

\(N=-x^2-12y^2+10xy\)

23 tháng 5 2020

cảm ơn bạn

14 tháng 8 2020

a) M + (5x2 - 2xy) = 6x2 + 9xy - y2

=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)

=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = (6x2 - 5x2) + (9xy + 2xy) - y2 = x2 + 11xy - y2

b) Sửa đề lại đi nhé

c) (25x2y - 13x2y + y3) - M = 11x2y - 2y2

=> M = (25x2y - 13x2y + y3) - (11x2y - 2y2)

=> M = 25x2y - 13x2y + y3 - 11x2y + 2y2

=> M = x2y + y3 + 2y2

d) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7

14 tháng 8 2020

a) Ta có : M = 6x2 + 9xy - y2 - (5x2 - 2xy)

                    =  6x2 + 9xy - y2 - 5x2 + 2xy

                    = x2 + 11xy - y2

b) Ta có M = x2 - 7xy + 8y2 - (3xy - 24y2)

                 = x2 - 7xy + 8y2 - 3xy + 24y2

                  = x2 - 10xy + 32y2

c) Ta có M = 25x2.y- 13x2y + y3 - (11x2y - 2y2)

                  = 25x2.y- 13x2y + y3 - 11x2y + 2y2

                 = x2y + y3 + 2y2

d) Ta có M = -(12x4 - 15x2y + 2xy2 + 7)

                 =  -12x4 + 15x2y - 2xy2 - 7