K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Chia f(x) cho x+1 thì dư 6 => \(f\left(x\right)-6⋮x+1\)

hay \(x^2+ax+b-6⋮x+1\)

Làm tính chia đa thức ta được: \(\left(x^2+ax+b-6\right):\left(x+1\right)=x-1+a\)

và dư ra \(b-a-5\)

Mà phép tính trên chia hết \(\Rightarrow b-a-5=0\Leftrightarrow b-a=5\)(1)

Tương tự: \(x^2+ax+b-3⋮x-2\)

Ta có: \(\left(x^2+ax+b-3\right):\left(x-2\right)=x+2+a\)

dư ra \(2a+b+1\). Phép chia chia hết \(\Leftrightarrow2a+b+1=0\Leftrightarrow2a+b=-1\)(2)

Từ (1) và (2) \(\Rightarrow2a+b-\left(b-a\right)=-1-5\)

\(\Leftrightarrow2a+b-b+a=-6\)

\(\Leftrightarrow3a=-6\Rightarrow a=-2\)

\(\Rightarrow b=3\)

Thay \(a=-2,b=3\)vào \(f\left(x\right):\)

\(f\left(x\right)=x^2-2x+3\)

Vậy...

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

21 tháng 1 2015

Vì f(x) chia cho x2-5x+6 được thương là 1-x2 và còn dư nên f(x) có bậc 4 và đa thức dư bậc cao nhất là 1.

Gọi f(x)=(x-2)(x-3)(1-x2)+ax+b

Ta có f(2)=2 vaf(3)=7 thay vào tìm đc a và b suy ra đa thức  f(x) cần tìm.

Giải giùm nha!!

7 tháng 2 2018

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

7 tháng 2 2018

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

29 tháng 3 2020

f(x)= (x-3). Q(x)+2 moi X 
f(x)=(x+4).H(x)+9 moi X 
=>f(3)= 2 
f( -4)= 9 
f(x)= (x^2+x-12).(x^2+3)+ ax +b 
=(x-3)(x+4). (x^2+3) +ax+b 
=>f(3)= 3a+b=2 
f(-4)=b -4a=9 
=>a= -1; b=5 
=> f(x)=(x^2+x-12)(x^2+3)-x+5 
= x^4+x^3-9x^2+2x-31

# mui #

22 tháng 10 2021

Bài 1:

\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)

\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)

Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)

Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)

 

22 tháng 10 2021

Bài 2:

Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1

Gọi đa thức dư là \(ax+b\)

Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên

\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)

Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)

Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)

Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)

Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)

\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)

23 tháng 2 2022

THAM KHẢO:

undefined

undefined

 

23 tháng 2 2022

Dư mấy vậy bạn?

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)