Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi h(x) chia p(x) đc thương R(x) = ax + b
Theo bài ra ta có : H(x) = P(x) . q(x) + R(x) <=> x^54 + ... + x^9 + 1 = (x^2 - 1 )q(x) + ax + b <=> x^54 + x^45 +.. + x^9 + 1 = ( x- 1)( x+ 1 ) q(x) + ax + b
Thay x = 1 ta có
1 + 1 + ... + 1 = (1 -1 )( 1 + 1 ) q(1) + a.1 + b
=> 7 = a + b => a= 7 - b
Thay x = -1 ta có :
-1 + -1 +.. + -1 = ( 1- (-1) ) ( 1 + (-1) ) . q(-1) + a.-1 + b
=> -5 = b - a
Thay a = 7 - b ta có :
-5 = b - ( 7 - b) => -5 = b - 7 + b => 2b - 7 = -5 => 2b = 2 => b = 1
a = 7 - b = 7 - 1 = 6
VẬy dư của phwps chia là : 6x + 1
Bạn làm sai ở chỗ H(x) tại -1 rồi!
nếu thay x=-1 thì H(x)=1 vì mũ chẵn=1 còn mũ lẻ mới = -1
nên a=3;b=4=>ax+b=3x+4.
1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)
\(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2
2) gọi dư của phép chia là ax+b
ta có f(1) = a+b =51
f(-1) = -a+b =1
=> b =26 ; a =25
Vậy dư là : 25x + 26
ta có P(x) = (x-1)(x-2)(x-3) + R(x) ( R(x) = mx^2 + nx + i)
=> P(1) = m . 1 + n.1 + i = -15
=> P(2) = m . 2^2 + n . 2 + i = -15
=> P(3) = m . 3^2 + n . 3 + i = -9
còn lại tự làm nhé
+) Tính giá trị của x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)
=> (-2 + \(\sqrt{5}\)) 2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1 = 0
Vậy x2 + 4x - 1 = 0 tại x = -2 + \(\sqrt{5}\)
+) A = 3x3.(x2 + 4x - 1 ) - 5x3 - 23x2 - 7x + 1
= 3x3.(x2 + 4x - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1
= (3x3 - 5x).(x2 + 4x - 1 ) - 3.(x2 + 4x -1) - 2 = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2
Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2
+) A = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2 chia cho (x2 + 4x - 1 ) dư - 2
a2+b2=a3+b3=1
suy ra a = 1 hoặc b = 1
suy ra a4+b4cũng =1
bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé
Giải trên máy Casio fx-570MS ( Casio fx-570 tương tự)
Nhắc lại: Đa thức P(x) chia hết cho ax + b khi và chỉ khi P(-ba)=0
Dư của phép chia đa thức P(x) cho ax + b là P(-ba)
Quy trình bấm phím như sau:
1. Ghi vào màn hình: 6A3 -7A2 -16A
Theo đề bài ta có:
f(x) = x + x3 + x9 + x27 + x81 + x243 = Q(x).(x2 - 1) + ax + b
Thế f(1), f(-1) ta có hệ:
\(\hept{\begin{cases}a+b=6\\-a+b=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=6\\b=0\end{cases}}\)
Vậy a + b = 6
Lời giải:
Vì số chia là $x^2-1$ có bậc 2 nên đa thức dư phải có bậc nhỏ hơn $2$
Đặt:
\(\underbrace{1+x^9+x^{18}+...+x^{54}}_{\text{7 số hạng}}=Q(x)(x^2-1)+ax+b\)
Thay \(x=1\Rightarrow 7=Q(1).0+a+b\Leftrightarrow a+b=7\) \((1)\)
Thay \(x=-1\Rightarrow 1=Q(-1).0-a+b\Leftrightarrow -a+b=1\) \((2)\)
Từ \((1),(2)\Rightarrow a=3;b=4\)
Như vậy đa thức dư là \(3x+4\)