K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Một nửa tích 2 đường chéo nhân với sin góc tạo thành bởi 2 đường chéo

26 tháng 6 2017

a, Giả sử tam giác ABC có  A ^ < 90 0  kẻ đường cáo BH. Ta có BH=AB.sin A ^

=>  S ∆ A B C = 1 2 A C . B H =  1 2 A B . A C . sin A

b, Giả sử tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O có  A O B ^ = α < 90 0 . Kẻ AH ⊥ BD, tại H và CK ⊥ BD tại K

Ta có: AH = OA.sinα

=>  S A B D = 1 2 B D . A H =  1 2 B D . O A . sin α

Tương tự:  S C B D = 1 2 B D . C K =  1 2 B D . O C . sin α

=>  S A B C D = S A B D + S C B D =  1 2 B D . O A . sin α +  1 2 B D . O C . sin α =  1 2 B D . A C . sin α

16 tháng 1 2022

Có hình vẽ :  A B C D H K o

Dễ thấy SABCD = \(\frac{1}{2}\left(AH+CK\right).BD\)

mà lại có \(AH=AO.sin\alpha\) ; \(CK=OC.sin\alpha\)

=> SABCD = \(\frac{1}{2}\sin\alpha.AC.BD\)

Khi 2 đường chéo vuông góc với nhau thì 

\(H\equiv O\equiv K\Rightarrow AH=AO=CK\)

hay \(sin\alpha=1\)

Khi đó \(S_{ABCD}=\frac{1}{2}mn\)(đpcm) 

NV
7 tháng 4 2021

Gọi tứ giác là ABCD, E là giao điểm 2 đường chéo, a là góc nhọn tạo bởi 2 đường chéo. Từ A và C lần lượt kẻ AH và CK vuông góc BD

\(\Rightarrow AH=AE.sina\) ; \(CK=CE.sina\)

\(S_{ABCD}=S_{ABD}+S_{CBD}=\dfrac{1}{2}AH.BD+\dfrac{1}{2}CK.BD\)

\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BD\left(AH+CK\right)=\dfrac{1}{2}BD.\left(AE.sina+CE.sina\right)\)

\(=\dfrac{1}{2}BD.sina\left(AE+CE\right)=\dfrac{1}{2}BD.sina.AC=\dfrac{1}{2}AC.BD.sina\)

\(=\dfrac{1}{2}.9.13.sin48^0\approx43,5\left(cm^2\right)\)

undefined

9 tháng 3 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giả sử hai đường chéo AC, BD cắt nhau tại I, ∠ (AIB) = α  là góc nhọn (xem h.bs.9)

Kẻ đường cao AH của tam giác ABD và đường cao CK của tam giác CBD.

Ta có: AH = AI.sin α , CK = CI.sin α

Diện tích tam giác ABD là  S A B D  = 1/2 BD.AH.

Diện tích tam giác CBD là  S C B D  = 1/2 BD.CK.

Từ đó diện tích S của tứ giác ABCD là:

S = S A B D + S C B D  = 1/2BD.(AH + CK)

= 1/2 BD.(AI + CI)sin α  = 1/2BD.AC.sin α