Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a/ Vì 32020= (34)504.34= A1 . 81
=> Chữ số tận cùng là 81.
b/ 42020=(44)504.44= A1 . 256
=> Chữ số tận cùng là 56.
c/ Vì 32020= (34)504.34= A1 . 81
=> Chữ số tận cùng là 81. (1)
Vì 52020=(54)504.54= A1 . 625
=> Chữ số tận cùng là 25 (2)
Từ (1) và (2) , suy ra:
Tổng 2 chữ số tận cùng của 32020 và 52020 là:
81 + 25 =106
=> Chữ số tận cùng là 06.
2/a/ Vì 3100=(34)23.35= A1 . 243
=> Chữ số tận cùng là 243.
b/ Vì 7200= (74)49. 74 = A1 . 2401
=> Chữ số tận cùng là 401.
a) Ta có: \(S=1+4+4^2+...+4^{100}\)
\(\Rightarrow4S=4+4^2+4^3+...+4^{101}\)
\(\Leftrightarrow4S-S=\left(4+4^2+...+4^{101}\right)-\left(1+4+4^2+...+4^{100}\right)\)
\(\Leftrightarrow3S=4^{101}-1\)
\(\Rightarrow S=\frac{4^{101}-1}{3}\)
b) Tương tự phần a ta tính được: \(A=\frac{5^{97}-5}{4}\)
Ta có: \(5^{97}-5=\overline{...5}-5=\overline{...0}\)
Đến đây thì A sẽ có cstc là 0 hoặc 4
a) S = 1 + 4 + 42 + 43 + ... + 4100
=> 4S = 4( 1 + 4 + 42 + 43 + ... + 4100 )
= 4 + 42 + 43 + ... + 4101
=> 4S - S = 3S
= 4 + 42 + 43 + ... + 4101 - ( 1 + 4 + 42 + 43 + ... + 4100 )
= 4 + 42 + 43 + ... + 4101 - 1 - 4 - 42 - 43 - ... - 4100
= 4101 - 1
=> S = (4101 - 1 )/3
b) A = 5 + 52 + 53 + ... + 596
= ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 595 + 596 )
= 30 + 52( 5 + 52 ) + ... + 594( 5 + 52 )
= 30 + 52.30 + ... + 594.30
= 30( 1 + 52 + ... + 594 ) chia hết cho 10 ( vì 30 chia hết cho 10 )
=> A có tận cùng là 0
Nhận xét :
1 = 4 x 0 + 1
5 = 4 x 1 + 1
9 = 4 x 2 + 1
.................
8009 = 4 x 2002 + 1
Mỗi số hạng của S đều được nâng lên lũy thừa 4n + 1 nên giữ nguyên chữ số tận cùng
. Vậy chữ số tận cùng của S là : 2 + 3 + 4 + ....... + 2004 = 2004 + 2 x2003 /2= 1003x2003 = ...9 (
vậy chữ số tận cx là 9
ta có \(S=\left(5^1+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{93}\right)\)\(^3\)\(+5^{96}\))
=5(1+5^3)+5^2(1+5^3)+...+5^93(1+5^3)
=126(5+5^2+...+5^93)
=> S chia hết cho 26
b) s có tận cùng là 0
S=1+5+5^2+...+5^2020
=>5S=5+5^2+..+5^2021
=>4S=5^2021-1
=>S=\(\frac{5^{2021}-1}{4}\)
Ta có :
5^2021=.....5
=>5^2021-1=4
=>S=\(\frac{......4}{4}\)
=...1