Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1411 + 1511 + 1611 + 1711 = 1410.4 + ....5 + ....6 + 1710.7 = (142)5.4 + ....5 + ....6 + (172)5 . 7 = (.....6)5 . 4 + .....5 + ....6 + (....9)5.7
= ....6 . 4 + ....5 + ....6 + ....1 . 7 = ....4 + ....5 + ....6 + ...7 = .....2
Vậy chứ số tận cùng của 1411 + 1511 + 1611 + 1711 = 2
14 mũ 1 tận cùng là 4 , 14 mũ 2 tận cùng là 6 , 14 mũ 3 tận cùng là 4 , ... , 14 mũ 11 tận cùng là 4
lũy thừa của số có tận cùng bằng 5 luôn có tận cùng là 5
lũy thừa của số có tận cùng bằng 6 luôn có tận cùng là 6
17 mũ 1 tận cùng là 7, 17 mũ 2 tận cùng là 9 , 17 mũ 3 tận cùng là 3 , 17 mũ 4 tận cùng là 1 ,17 mũ 5 tận cùng là 7 , ... , 17 mũ 11 tận cùng là 3
14 mũ 11 + 15 mũ 1 + 16 mũ 11 + 17 mũ 11 = 4 + 5 + 6 + 3 = 18
Vậy số tận cùng của phép tính là 8
a) 72000 = (74)x(74)x..x(74) ( có 500 thừa số 74)
= (...1)x(...1)x....x(...1) = (...1)
=> chữ số tận cùng của 72000 là 1
b) 91999 x 19990 = 91999x1 = 91999 = (92)x(92)x...x(92)x9 ( có 99 số 92)
= (...1)x(...1)x...x(...1)x 9 = 9
=> chữ số tận cùng của 91999x19990 là 9
c) xl bn nha! mk ko bk lm câu c
a) Dấu hiệu là điểm bài thi học kì của 100 học sinh lớp 7 của một trường Trung học Cơ Sở Hòa Bình. Số các dấu hiệu là 100
b) Bảng tần số
Giá trị (x) | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
Tần số (n) | 2 | 1 | 2 | 4 | 6 | 8 | 9 | 10 | 13 | 11 | 8 | 8 | 4 | 6 | 3 | 2 | 3 | 1 | N=100 |
Nhận xét: Giá trị lớn nhất là 19, giá trị nhỏ nhất là 1; tần số lớn nhất là 13, tần số nhỏ nhất là 1.
Để tìm 3 chữ số tận cùng của dãy số 1-11+111-1111+...+11..11 (2013 chữ số), chúng ta có thể tính từng số hạng trong dãy và cộng chúng lại.
Đầu tiên, chúng ta nhận thấy rằng dãy này có một quy luật. Mỗi số hạng trong dãy có số chữ số tăng dần từ 1 đến 2013, và mỗi số hạng sau đều là số hạng trước đó nhân -1.
Với quy luật này, chúng ta có thể tính từng số hạng và cộng chúng lại:
1 - 11 + 111 - 1111 + ... + 11..11
Để tính số hạng thứ i, chúng ta nhân số 1 với 10^(i-1), sau đó nhân kết quả với -1^(i+1).
Ví dụ:
- Số hạng thứ 1: 1 * 10^(1-1) * (-1^(1+1)) = 1 * 1 * 1 = 1
- Số hạng thứ 2: 1 * 10^(2-1) * (-1^(2+1)) = 1 * 10 * -1 = -10
- Số hạng thứ 3: 1 * 10^(3-1) * (-1^(3+1)) = 1 * 100 * 1 = 100
- ...
Tiếp tục như vậy cho đến số hạng thứ 2013. Sau đó, chúng ta cộng tất cả các số hạng lại với nhau:
1 - 10 + 100 - 1000 + ... + (2013 số 1)
Chúng ta chỉ quan tâm đến 3 chữ số tận cùng, nên chúng ta chỉ cần tính tổng các số hạng có 3 chữ số tận cùng.
Để tính tổng các số hạng có 3 chữ số tận cùng, chúng ta thấy rằng các số hạng có chữ số tận cùng khác nhau sẽ có tổng bằng 0. Vì vậy, chúng ta chỉ cần tính tổng các số hạng có chữ số tận cùng là 1.
Có 2013 số hạng trong dãy, và chúng ta cần tính tổng các số hạng có chữ số tận cùng là 1. Vậy tổng này sẽ là 2013.
Vậy, 3 chữ số tận cùng của dãy số 1-11+111-1111+...+11..11 (2013 chữ số) là 2013.
a) Ta thấy 11! = 1 . 2 . ... 10 . 11 có thừa số 10 nên có tận cùng là 0
tương tự 17! = 1 . 2 ... 10 ... 17 có thừa số 10 nên có tận cùng là 0
b) tích 2 . 4 . 6 ... 98 có tận cùng là 0
tích 1 . 3 . 5 . 7 ... 99 có tận cùng là 0
suy ra : 2 . 4 . 6 ... 98 + 1 . 3 . 5 . 7 ... 99 có tận cùng là 5
a, chữ số tận cùng của 11!=0 ; 17!=0
b, tận cùng của tổng là 5
a) \(11^9+12^9+13^9+14^9+15^9+16^9\)
\(=11^{4.2}.11+12^{4.2}.12+13^{4.2}.13+14^{4.2}.14+15^9+16^9\)
\(=...1.11+...6.12+...1.13+...6.14+...5+...6\)
\(=...1+...2+...3+...4+...5+...6\)
\(=...1\)
Vậy biểu thức trên có chũ số tận cùng là 1
b) \(25^7+26^7+27^7+28^7+29^7+29^7+30^7+31^7\)
\(=...5+...6+27^4.27^3+28^4.28^3+29^4.29^3+29^4.29^3+...0+...1\)
\(=...5+...6+...3+...8+...9+...9+...0+...1\)
\(=...1\)
Vậy biểu thức trên có chữ số tận cùng là 1