K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

a/

$x+y=xy$

$\Leftrightarrow xy-x-y=0$

$\Leftrightarrow x(y-1)-(y-1)=1$

$\Leftrightarrow (y-1)(x-1)=1$

Do $x,y$ nguyên nên $x-1,y-1$ cũng nguyên. Mà tích của chúng bằng 1 nên ta xét các TH sau:

TH1: $x-1=1, y-1=1\Rightarrow x=2; y=2$ (tm)

TH2: $x-1=-1, y-1=-1\Rightarrow x=0; y=0$ (tm)

 

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

b/

$5xy-2y^2-2x^2=-2$

$\Leftrightarrow 2x^2-5xy+2y^2=2$

$\Leftrightarrow (2x-y)(x-2y)=2$

Do $x,y$ nguyên nên $2x-y, x-2y$ cũng là số nguyên. Mà tích của chúng bằng 2 nên ta xét các TH sau:
TH1: $2x-y=1, x-2y=2$

$\Rightarrow x=0; y=-1$

TH2: $2x-y=-1, x-2y=-2$

$\Rightarrow x=0; y=1$

TH3: $2x-y=2, x-2y=1$

$\Rightarrow x=1; y=0$

TH4: $2x-y=-2, x-2y=-1$

$\Rightarrow x=-1; y=0$

thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi

45646565557657767876876876565657676768876334455454655454

27 tháng 12 2017

mình giải đc phần a) thôi:

x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1

 hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0

x-1=-1=> x=0

+) 1-y=-1 => y=2

x-1=1 => x=2

=> cặp x,y cần tìm là (0;0) và (2;2)

16 tháng 12 2021

\(\dfrac{3x^2-3y^2}{5xy}\cdot\dfrac{15x^2y}{2y-2x}=\dfrac{3\left(x-y\right)\left(x+y\right)\cdot15x^2y}{5xy\cdot\left(-2\right)\left(x-y\right)}=\dfrac{-9x\left(x+y\right)}{2}\)

KO PHẢI CHUYỆN YÊU ĐƯƠNG MÀ ĐÂY LÀ TOÁN

Mk làm bài 2 thui, bài 1 nhân ra rùi rút gọn đi là đc 

a) \(5x^2-5y^2=5\left(x^2-y^2\right)=5\left(x-y\right)\left(x+y\right)\)

b) \(x^2-5xy+x-5y=x\left(x-5y\right)+\left(x-5y\right)=\left(x-5y\right)\left(x+1\right)\)

c) Phần này phải là \(x^2-y^2+4x+4y\)mới đúng, như vậy nó sẽ là :\(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)=\left(x+y\right)\left(x-y+4\right)\)

d) \(x^2-2x-y^2-2y=\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x+y\right)\left(x-y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)

Chúc bạn hok tốt !