Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$
$\Rightarrow x=2018a; y=2019a; z=2020a$
$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$
Mặt khác:
$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$
Từ $(1); (2)$ ta có đpcm.
\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
\(\Leftrightarrow\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}=\frac{x+2017}{2019}+\frac{x+2017}{2018}\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}-\frac{x+2017}{2019}-\frac{x+2017}{2018}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)
Mà \(\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)\ne0\)
\(\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\)
Vậy ..
=> (x-4/2021 +1) + (x-3/2020 +1) = (x-2/2019 +1)+ (x-1/2018 +1)
=> x+2017/2021 + x+2017/2020 = x+2017/2019 + x+2017/2018
=> x+2017/2018 + x+2017/2018 - x+2017/2020 - x+2017/2021 = 0
=> (x+2017).(1/2018+1/2019+1/2020+1/2021) = 0
=> x+2017 = 0 ( vì 1/2018+1/2019+1/2020+1/2021 > 0 )
=> x=-2017
Vậy x=-2017
k mk nha
pt tương đương \(\left|y-2020\right|=2^x-y+4039\) (*)
TH1: y\(\ge\)2020
pt (*) trở thành: 2y - 6059 = \(2^x\) (1)
Do 2y chẵn , 6059 lẻ => 2y - 6059 là số lẻ => \(2^x\)lẻ => x=0
Thay x =0 vào (1) tìm được y = 3030 (tm)
TH2: y \(\le\)2020
pt (*) trở thành: 2019= \(-2^x\)
=> Ko có x thỏa mãn
Vậy (x;y) = (0;3030)
Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ
\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x
Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)
\(\Rightarrow y\ge2021\)
Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn
\(\Rightarrow y=2021\)
Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)
Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho
- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm
- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm
- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)
Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)
\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm
Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)
Xét:
+)z=0=>2020z=1
Mà: 2018x+2019y=2 (vì x,y,z E N) (loại)
+)z >= 1
=> 2020z chẵn
mà 2019z luôn lẻ => 2018x lẻ=>x=0
=> z=1
Vậy: x=0,z=1,y=1
2018x + 2019y = 2020z
TH1 : x = 0 => 20180 + 2019y = 2020z
=> 1 + 2019y = 2020z
=> y = 1 ; z = 1
TH2 : y = 0 => 2018x + 20190 = 2020z
=> 2018x + 1 = 2020z
Vế trái là số lẻ khi x > 1
Vế phải là số chẵn khi x > 1
=> TH2 bị loại
TH3 : x,y,z khác 0
=> 2018x + 2019y là số lẻ
2020z là số chẵn
=> TH3 bị loại
Vậy x = 0 ; y = 1 ; z = 1
Với \(x\ne y\ne z\ne0\).Ta có: Do VT luôn luôn là số lẻ mà VP luôn luôn là số chẵn(Vô Lý)
Với \(x=0\)\(\Rightarrow1+2019^y=2020^z\)
\(\Rightarrow y=1,z=1\)
Lần lượt thử các trường hợp voiứ y=0,z=0